Convex Optimization — Boyd & Vandenberghe

# **Convex Optimization**

- optimization problems
- convex sets
- convex functions
- convex problems
- duality
- additional topics

slides compiled by Neal Parikh for CS 228T, Stanford University most content/figures from Boyd and Vandenberghe (errors mine)

## Mathematical optimization

• problems of the form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in S \end{array}$ 

- convex optimization: minimizing a convex function over a convex set
  - tractable to solve (even with nondifferentiable objective)
  - powerful both for theory and practice
- combinatorial optimization
  - when S is discrete, e.g.,  $x \in \{0,1\}^n$
  - when difficult, often solved via convex relaxations
- nonconvex optimization
  - can only find local optima
  - choice of algorithm is much more important

#### Affine set

**line** through  $x_1$ ,  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$
$$\theta = 1.2 \qquad x_1$$
$$\theta = 1$$
$$\theta = 0.6$$
$$\theta = 0.2$$

affine set: contains the line through any two distinct points in the set

**example**: solution set of linear equations  $\{x \mid Ax = b\}$ 

(conversely, every affine set can be expressed as solution set of system of linear equations)

#### **Convex set**

**line segment** between  $x_1$  and  $x_2$ : all points

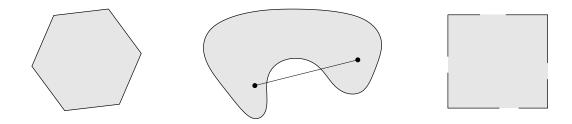
$$x = \theta x_1 + (1 - \theta) x_2$$

with  $0 \le \theta \le 1$ 

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)



#### **Convex combination and convex hull**

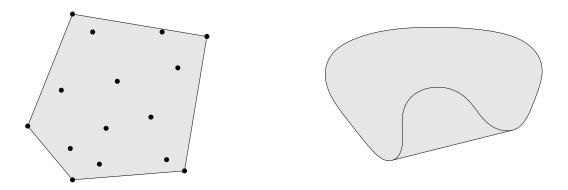
**convex combination** of  $x_1, \ldots, x_k$ : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with  $\theta_1 + \cdots + \theta_k = 1$ ,  $\theta_i \ge 0$ 

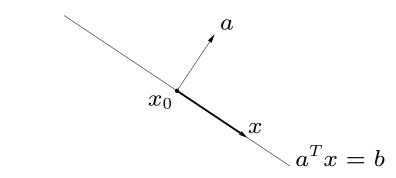
can view this probabilistically as a *mixture* or *expectation* 

**convex hull** conv S: set of all convex combinations of points in S

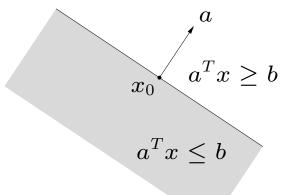


## Hyperplanes and halfspaces

**hyperplane**: set of the form  $\{x \mid a^T x = b\}$   $(a \neq 0)$ 



halfspace: set of the form  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 



- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

## **Euclidean balls and ellipsoids**

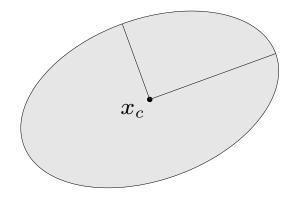
(Euclidean) ball with center  $x_c$  and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with  $P \in \mathbf{S}_{++}^n$  (*i.e.*, P symmetric positive definite)



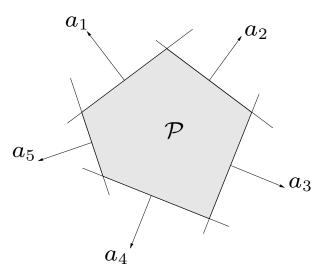
with A square and nonsingular

## Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$ 



polyhedron is intersection of finite number of halfspaces and hyperplanes

bounded polyhedron is called a polytope; can also be expressed as the convex hull of its vertices (Minkowski-Weyl theorem)

## **Operations that preserve convexity**

practical methods for establishing convexity of a set  ${\cal C}$ 

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

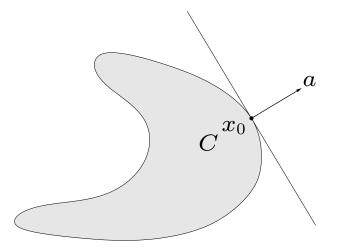
- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . . ) by operations that preserve convexity
  - intersection
  - many others

## Supporting hyperplane theorem

supporting hyperplane to set C at boundary point  $x_0$ :

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$  and  $a^T x \leq a^T x_0$  for all  $x \in C$ 



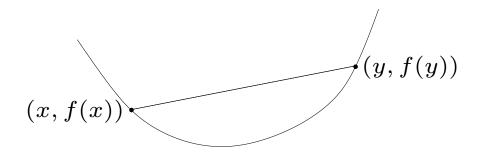
**supporting hyperplane theorem:** if C is convex, then there exists a supporting hyperplane at every boundary point of C

### **Convex functions**

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if  $\mathbf{dom} f$  is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all  $x, y \in \operatorname{\mathbf{dom}} f$ ,  $0 \le \theta \le 1$ 



- f is concave if -f is convex
- f is strictly convex if  $\operatorname{dom} f$  is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for  $x, y \in \operatorname{\mathbf{dom}} f$ ,  $x \neq y$ ,  $0 < \theta < 1$ 

## Examples on R

convex:

- affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$
- exponential:  $e^{ax}$ , for any  $a \in \mathbf{R}$
- powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}\text{, for }\alpha\geq 1$  or  $\alpha\leq 0$
- powers of absolute value:  $|x|^p$  on **R**, for  $p \ge 1$
- negative entropy:  $x \log x$  on  $\mathbf{R}_{++}$

concave:

- affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$
- powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $0 \leq \alpha \leq 1$
- logarithm:  $\log x$  on  $\mathbf{R}_{++}$

#### **Extended-value extension**

extended-value extension  $\tilde{f}$  of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in  $\mathbf{R} \cup \{\infty\}$ ), means the same as the two conditions

- $\mathbf{dom} f$  is convex
- for  $x, y \in \operatorname{\mathbf{dom}} f$  ,

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

## **First-order condition**

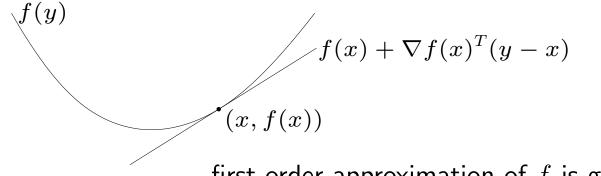
f is differentiable if  $\operatorname{\mathbf{dom}} f$  is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**1st-order condition:** differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all  $x, y \in \operatorname{\mathbf{dom}} f$ 



first-order approximation of f is global underestimator

#### **Second-order conditions**

f is twice differentiable if dom f is open and the Hessian  $\nabla^2 f(x) \in \mathbf{S}^n$ ,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**2nd-order conditions:** for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all  $x \in \operatorname{\mathbf{dom}} f$ 

• if  $\nabla^2 f(x) \succ 0$  for all  $x \in \operatorname{\mathbf{dom}} f$ , then f is strictly convex

### **Examples**

quadratic function:  $f(x) = (1/2)x^T P x + q^T x + r$  (with  $P \in \mathbf{S}^n$ )

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if  $P \succeq 0$ 

least-squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

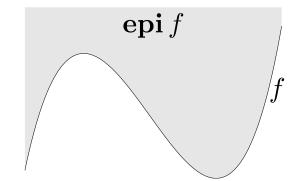
**log-sum-exp**:  $f(x) = \log \sum_{k=1}^{n} \exp x_k$  is convex

can generalize to  $\log \int \exp i \theta$ 

#### Relationship of convex sets and functions

epigraph of  $f : \mathbf{R}^n \to \mathbf{R}$ :

$$\operatorname{epi} f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, \ f(x) \le t\}$$



f is convex if and only if  $\operatorname{\mathbf{epi}} f$  is a convex set

## Jensen's inequality

**basic inequality:** if f is convex, then for  $0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

**extension:** if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

useful source of lower bounds

basic inequality is special case with discrete distribution

 $\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$ 

# Verifying convexity

practical methods for establishing convexity of a function

- 1. verify definition
- 2. for twice differentiable functions, show  $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
  - nonnegative weighted sum
  - composition with affine function
  - pointwise maximum and supremum
  - composition

#### **Operations that preserve convexity**

nonnegative multiple:  $\alpha f$  is convex if f is convex,  $\alpha \ge 0$ sum:  $f_1 + f_2$  convex if  $f_1, f_2$  convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

*e.g.*, distance to a set:  $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$  is convex if S is convex

### **Optimization problem in standard form**

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $h_i(x) = 0$ ,  $i = 1, ..., p$ 

- $x \in \mathbf{R}^n$  is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$  is the objective or cost function
- $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$ , are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$  are the equality constraint functions

#### optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$  if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$  if problem is unbounded below

### **Optimal and locally optimal points**

- x is **feasible** if  $x \in \operatorname{dom} f_0$  and it satisfies the constraints
- a feasible x is **optimal** if  $f_0(x) = p^*$ ;  $X_{opt}$  is the set of optimal points
- x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

## **Implicit constraints**

the standard form optimization problem has an **implicit constraint** 

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- $\bullet$  we call  ${\mathcal D}$  the domain of the problem
- the constraints  $f_i(x) \leq 0$ ,  $h_i(x) = 0$  are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize 
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints  $a_i^T x < b_i$ 

## **Convex optimization problem**

#### standard form convex optimization problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $a_i^T x = b_i$ ,  $i = 1, ..., p$ 

 $f_0, f_1, \ldots, f_m$  are convex; equality constraints are affine often written as

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

feasible set of a convex optimization problem is convex

any locally optimal point of a convex problem is (globally) optimal

## **Optimality criterion for differentiable** $f_0$

x is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$  for all feasible y

if nonzero,  $\nabla f_0(x)$  defines a supporting hyperplane to feasible set X at x unconstrained problem: x is optimal if and only if

 $x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$ 

## **Equivalent convex problems**

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• introducing slack variables for linear inequalities

minimize 
$$f_0(x)$$
  
subject to  $a_i^T x \leq b_i$ ,  $i = 1, \dots, m$ 

is equivalent to

minimize (over 
$$x, s$$
)  $f_0(x)$   
subject to  $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$   
 $s_i \ge 0, \quad i = 1, \dots, m$ 

• minimizing over some variables

minimize 
$$f_0(x_1, x_2)$$
  
subject to  $f_i(x_1) \le 0$ ,  $i = 1, ..., m$ 

is equivalent to

minimize 
$$\tilde{f}_0(x_1)$$
  
subject to  $f_i(x_1) \leq 0, \quad i = 1, \dots, m$ 

where 
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

#### • consensus

minimize 
$$f_1(x) + f_2(x) + \dots + f_k(x)$$

is equivalent to

minimize 
$$f_1(x_1) + f_2(x_2) + \cdots + f_k(x_k)$$
  
subject to  $x_i = x, \quad i = 1, \dots, k$ 

## **Examples of convex optimization problems**

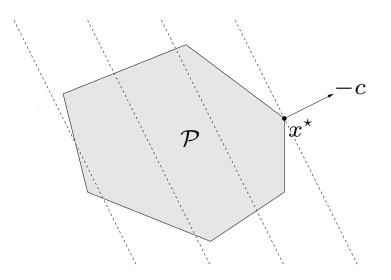
- maximum entropy
- maximum likelihood estimation in exponential families
- projection onto a convex set
  - Euclidean projection (measure distance to set in  $\ell_2$  norm)
  - Bregman projection (measure via Bregman divergence)

e.g., minimum KL divergence to a convex set of distributions

# Linear program (LP)

minimize 
$$c^T x + d$$
  
subject to  $Gx \leq h$   
 $Ax = b$ 

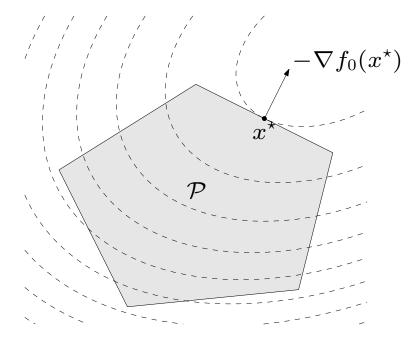
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



## Quadratic program (QP)

minimize 
$$(1/2)x^TPx + q^Tx + r$$
  
subject to  $Gx \leq h$   
 $Ax = b$ 

- $P \in \mathbf{S}_{+}^{n}$ , so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



## **Euclidean projection**

 $\Pi_C(x_0)$ : the point in C closest to point  $x_0$ 

can be computed in closed form for many useful examples

- affine set
- nonnegative orthant
- halfspace
- box

• consensus set 
$$C = \{x \in \mathbf{R}^{Nn} \mid x_1 = x_2 = \dots = x_N\}$$

## Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

variable  $x \in \mathbf{R}^n$ , domain  $\mathcal{D}$ , optimal value  $p^{\star}$ 

**Lagrangian:**  $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ , with  $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ ,

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- $\lambda_i$  is Lagrange multiplier associated with  $f_i(x) \leq 0$
- $\nu_i$  is Lagrange multiplier associated with  $h_i(x) = 0$

## Lagrange dual function

Lagrange dual function:  $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ ,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be  $-\infty$  for some  $\lambda,\,\nu$ 

**lower bound property:** if  $\lambda \succeq 0$ , then  $g(\lambda, \nu) \leq p^{\star}$ 

#### Least-norm solution of linear equations

 $\begin{array}{ll} \text{minimize} & x^T x\\ \text{subject to} & Ax = b \end{array}$ 

#### dual function

- Lagrangian is  $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of  $\nu$ 

lower bound property:  $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$  for all  $\nu$ 

Convex Optimization

## The dual problem

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$ 

- finds best lower bound on  $p^{\star},$  obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted  $d^{\star}$
- $\lambda$ ,  $\nu$  are dual feasible if  $\lambda \succeq 0$ ,  $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint  $(\lambda, \nu) \in \operatorname{dom} g$  explicit

## Weak and strong duality

weak duality:  $d^{\star} \leq p^{\star}$ 

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

strong duality:  $d^{\star} = p^{\star}$ 

- does not hold in general
- (usually) holds for convex problems
- Slater's constraint qualification
  - strong duality holds for a convex problem if it's strictly feasible
  - guarantees that the dual optimum is attained (if  $p^{\star} > -\infty$ )

## Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable  $f_i$ ,  $h_i$ ):

- 1. primal feasible:  $f_i(x) \leq 0$ ,  $i = 1, \ldots, m$ ,  $h_i(x) = 0$ ,  $i = 1, \ldots, p$
- 2. dual feasible:  $\lambda \succeq 0$
- 3. complementary slackness:  $\lambda_i f_i(x) = 0$ ,  $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

## KKT conditions for convex problem

if  $\tilde{x}$ ,  $\tilde{\lambda}$ ,  $\tilde{\nu}$  satisfy KKT for a convex problem, then they are optimal if **Slater's condition** is satisfied:

- x is optimal if and only if there exist  $\lambda,\,\nu$  that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition  $\nabla f_0(x) = 0$  for unconstrained problem

## **Duality and problem reformulations**

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

#### common reformulations

- introduce new variables and equality constraints
  - consensus
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

## **Unconstrained minimization**

minimize f(x)

- f convex, continuously differentiable (hence  $\mathbf{dom} f$  open)
- we assume optimal value  $p^* = \inf_x f(x)$  is attained (and finite)

#### unconstrained minimization methods

- produce sequence of points  $x^{(k)} \in \operatorname{\mathbf{dom}} f$  ,  $k=0,1,\ldots$  with

$$f(x^{(k)}) \to p^{\star}$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$

## **Gradient descent method**

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)}),$$
 where t is the step size

given a starting point  $x \in \operatorname{dom} f$ .

repeat

1.  $\Delta x := -\nabla f(x)$ .

2. Line search. Choose step size t via exact or backtracking line search.

3. Update.  $x := x + t\Delta x$ .

until stopping criterion is satisfied.

- a descent method (objective decreases each iteration)
- very simple, but often very slow; rarely used in practice
- in the constrained case, can use 'projected gradient', which wraps the righthand side with Euclidean projection onto feasible set

## **Optimization algorithms**

- many algorithms available for different classes of problems
- reformulating the problem may make different algorithms applicable
- important to distinguish between the problem formulation and the algorithm used to solve it
- specialized vs general-purpose algorithms
  - belief propagation (inference in graphical models)
  - expectation-maximization (MLE with latent variables)
- can decide whether to solve the problem directly or via the dual
  - can make available additional problem structure
  - but the dual function is generally *nonsmooth*

## Variational methods

- the term *variational* refers generically to optimization-based methods for doing something
  - historically, comes from 'calculus of variations'
  - 'variational inference' refers to optimization-based methods to carry out inference in graphical models
- a *variational characterization* of an object is one that expresses the object as the solution to an optimization problem

often based on this principle: a closed convex function is the pointwise supremum of all its affine underestimators

- related but different task: given an algorithm, figure out what optimization problem it is implicitly solving (if any)
  - can give a deeper understanding of the algorithm
  - e.g., loopy BP, EM, boosting

## Variational methods

once a variational representation of an object is available

- design/apply different algorithms to compute the object
- approximate the object by *relaxing* the optimization problem (simplify objective/constraints)
- get bounds on the object (*e.g.*, via duality)
  - Jensen's inequality
  - Fenchel's inequality