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Convex Optimization



Mathematical optimization

• problems of the form

minimize f(x)
subject to x ∈ S

• convex optimization: minimize a convex function over a convex set

– tractable to solve (even with nonsmooth objective)
– powerful both for theory and practice

• nonconvex optimization

– can only find local optima
– choice of algorithm is much more important
– often uses ideas/methods from convex optimization

• most slides in this section from S. Boyd and L. Vandenberghe
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : Rn → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

solution or optimal point x⋆ has smallest value of f0 among all vectors
that satisfy the constraints
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, min. return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, max. area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of prediction error, plus regularization term
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time,
or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

• least squares problems

• linear programming problems

• convex optimization problems
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Least squares

minimize ‖Ax− b‖22

solving least squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least squares

• least squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F},
where F is cost of evaluating fi’s and their first and second
derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization
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Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)

• find a point that minimizes f0 among feasible points near it

• fast, can handle large problems

• require initial guess

• provide no information about distance to (global) optimum

global optimization methods

• find the (global) solution

• worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1970s: ellipsoid method and other subgradient methods

• 1980s & 90s: polynomial-time interior-point methods for convex
optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)

• since 2000s: many methods for large-scale convex optimization

applications

• before 1990: mostly in operations research, a few in engineering

• since 1990: many applications in engineering (control, signal
processing, communications, circuit design, . . . )

• since 2000s: machine learning and statistics
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Affine set

line through x1, x2: all points

x = θx1 + (1− θ)x2 (θ ∈ R)PSfrag replacements

x1

x2

θ = 1.2
θ = 1

θ = 0.6

θ = 0
θ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}
(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x1 and x2: all points

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0

can view this probabilistically as a mixture or expectation

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0

PSfrag replacements

0

x1

x2

convex cone: set that contains all conic combinations of points in the
set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

PSfrag replacements a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

PSfrag replacements

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector
• hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x− xc)
TP−1(x− xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

PSfrag replacements
xc

with A square and nonsingular
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Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

PSfrag replacements

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex
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Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

PSfrag replacements
a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Operations that preserve convexity

practical methods for establishing convexity of a set C

1 apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

2 show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

– intersection
– many others
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Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

• K is closed (contains its boundary)

• K is solid (has nonempty interior)

• K is pointed (contains no line)

examples

• nonnegative orthant K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

• positive semidefinite cone K = Sn
+

• nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}
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Generalized inequalities

generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

• componentwise inequality (K = Rn
+)

x �Rn

+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

• matrix inequality (K = Sn
+)

X �Sn

+
Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in �K

properties: many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x+ u �K y + v
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Minimum and minimal elements

�K is not in general a linear ordering: we can have x 6�K y and y 6�K x

x ∈ S is the minimum element of S with respect to �K if

y ∈ S =⇒ x �K y

x ∈ S is a minimal element of S with respect to �K if

y ∈ S, y �K x =⇒ y = x

example (K = R2
+)

x1 is the minimum element of S1

x2 is a minimal element of S2

PSfrag replacements

x1

x2S1

S2
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Optimal production frontier

• different production methods use different resources x ∈ Rn

• production set P : resources x for all possible production methods

• efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. Rn

+

example (n = 2)

x1, x2, x3 are efficient; x4, x5 are not

PSfrag replacements

x4x2

x1

x5

x3

λ

P

labor

fuel
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Convex functions

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

PSfrag replacements

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1
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Examples on R

convex:

• affine: ax+ b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax+ b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++
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Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) = ∞, x 6∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom f is convex

• for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

PSfrag replacements

(x, f(x))

f(y)

f(x) +∇f(x)T (y − x)

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

• if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex

here, A � 0, A ≻ 0 means A is positive semidefinite, definite respectively
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

least squares objective: f(x) = ‖Ax− b‖22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

log-sum-exp: f(x) = log
∑n

k=1 expxk is convex
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Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

PSfrag replacements

epi f

f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(Ez) ≤ Ef(z)

for any random variable z

useful source of lower bounds

basic inequality is special case with discrete distribution

p(z = x) = θ, p(z = y) = 1− θ
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Verifying convexity

practical methods for establishing convexity of a function

1 verify definition

2 for twice differentiable functions, show ∇2f(x) � 0

3 show that f is obtained from simple convex functions by operations
that preserve convexity

– nonnegative weighted sum
– composition with affine function
– pointwise maximum and supremum
– composition
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Operations that preserve convexity

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

e.g., distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is
convex
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Positive weighted sum & affine composition

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• log barrier for linear inequalities

f(x) = −
m
∑

i=1

log(bi−aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

• (any) norm of affine function: f(x) = ‖Ax+ b‖
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Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

• positive part: (x)+ = max(x, 0) is convex

• sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))T g′′(x)

examples

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

• powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

• many common probability densities are log-concave, e.g., normal:

f(x) =
1

√

(2π)n detΣ
e−

1
2
(x−x̄)TΣ−1(x−x̄)

• cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2 du
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Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only
if

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫

f(x, y) dy

is log-concave (not easy to show)
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : Rn → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p⋆; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints
(m = p = 0)

example:

minimize f0(x) = −∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

f0, f1, . . . , fm are convex; equality constraints are affine

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

feasible set of a convex optimization problem is convex

any locally optimal point of a convex problem is (globally) optimal
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Example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)
2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not
convex, h1 is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with
f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)
• ‖y − x‖2 > R, so 0 < θ < 1/2

• z is a convex combination of two feasible points, hence also feasible

• ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

PSfrag replacements

−∇f0(x)

X x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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Examples

• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +AT ν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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Equivalent convex problems

• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b
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Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

• convex problem with affine objective and constraint functions
• feasible set is a polyhedron

PSfrag replacements
P x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj , contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

PSfrag replacements
P

x⋆

−∇f0(x
⋆)
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Portfolio optimization

minimize −p̄Tx+ γxTΣx
subject to 1Tx = 1, x � 0

• x ∈ Rn is investment portfolio; xi is fraction invested in asset i

• p ∈ Rn is vector of relative asset price changes; modeled as a
random variable with mean p̄, covariance Σ

• p̄Tx = Er is expected return; xTΣx = var r is return variance

• γ > 0 is a risk aversion parameter

• problem above is a QP and dates back to Markowitz (1950s)
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Vector optimization

general vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

vector objective f0 : Rn → Rq, minimized w.r.t. proper cone K ∈ Rq

convex vector optimization problem

minimize (w.r.t. K) f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 K-convex (replace ≤ with �K in defn.), f1, . . . , fm convex
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Optimal and Pareto optimal points

set of achievable objective values

O = {f0(x) | x feasible}

• feasible x is optimal if f0(x) is the minimum value of O
• feasible x is Pareto optimal if f0(x) is a minimal value of O

PSfrag replacements

O

f0(x
⋆)

x⋆ is optimal

PSfrag replacements

O

f0(x
po)

xpo is Pareto optimal
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Multicriterion optimization

vector optimization problem with K = Rq
+

f0(x) = (F1(x), . . . , Fq(x))

• q different objectives Fi; roughly speaking we want all Fi’s to be
small

• feasible x⋆ is optimal if

y feasible =⇒ f0(x
⋆) � f0(y)

if there exists an optimal point, the objectives are noncompeting

• feasible xpo is Pareto optimal if

y feasible, f0(y) � f0(x
po) =⇒ f0(x

po) = f0(y)

if there are multiple Pareto optimal values, there is a trade-off
between the objectives
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Regularized least squares

minimize (w.r.t. R2
+) (‖Ax− b‖22, ‖x‖22)
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example for A ∈ R100×10; heavy line is formed by Pareto optimal points
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Risk return trade-off in portfolio optimization

minimize (w.r.t. R2
+) (−p̄Tx, xTΣx)

subject to 1Tx = 1, x � 0

• x ∈ Rn is investment portfolio; xi is fraction invested in asset i

• p ∈ Rn is vector of relative asset price changes; modeled as a
random variable with mean p̄, covariance Σ

• p̄Tx = Er is expected return; xTΣx = var r is return variance

example
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Scalarization

to find Pareto optimal points: choose λ � 0 and solve scalar problem

minimize λT f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

if x is optimal for scalar problem,
then it is Pareto optimal for vector
optimization problem

PSfrag replacements O

f0(x1)

λ1

f0(x2) λ2

f0(x3)

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying λ � 0
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Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

λT f0(x) = λ1F1(x) + · · ·+ λqFq(x)

examples

• regularized least squares problem of page 59

take λ = (1, γ) with γ > 0

minimize ‖Ax− b‖22 + γ‖x‖22

for fixed γ, a LS problem
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Portfolio optimization with transaction costs

• account for transaction costs incurred in trading activity in objective

−p̄Tx+ γxTΣx+ κφ(x− x0)

where x0 is the (fixed) initial holdings, κ > 0, and φ is a transaction
cost function given by

φ(x) =

N
∑

i=1

φi(xi),

i.e., the sum of the trading costs of the individual assets

• each φi could be modeled as, e.g.,

u 7→ |u|+ |u|3/2
V 1/2

where V is total market volume traded for the asset

• yields a convex problem that is no longer a QP
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Portfolio optimization with concentration limit

• add constraint that says that no more than a given fraction ω of the
portfolio value can be held in K assets

K
∑

i=1

x[i] ≤ ω

where lefthand side is sum of K largest post-trade positions

• with K = 20 and ω = 0.4, constraint prohibits holding more than
40% of total portfolio value in any 20 assets

• this constraint is convex and can be handled with standard
techniques (not well known among finance practitioners)
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