Machine Learning for Finance

Neal Parikh

Cornell University

Spring 2018

Convex Optimization

Mathematical optimization

- problems of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in S
\end{array}
$$

- convex optimization: minimize a convex function over a convex set
- tractable to solve (even with nonsmooth objective)
- powerful both for theory and practice
- nonconvex optimization
- can only find local optima
- choice of algorithm is much more important
- often uses ideas/methods from convex optimization
- most slides in this section from S. Boyd and L. Vandenberghe

Mathematical optimization

(mathematical) optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variables
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: constraint functions
solution or optimal point x^{\star} has smallest value of f_{0} among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, min. return
- objective: overall risk or return variance
device sizing in electronic circuits
- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, max. area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of prediction error, plus regularization term

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution (which may not matter in practice)
exceptions: certain problem classes can be solved efficiently and reliably
- least squares problems
- linear programming problems
- convex optimization problems

Least squares

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}
$$

solving least squares problems

- analytical solution: $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} k\left(A \in \mathbf{R}^{k \times n}\right)$; less if structured
- a mature technology
using least squares
- least squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} m$ if $m \geq n$; less with structure
- a mature technology
using linear programming
- not as easy to recognize as least squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving $\ell_{1^{-}}$or ℓ_{∞}-norms, piecewise-linear functions)

Convex optimization problem

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- objective and constraint functions are convex:

$$
\begin{aligned}
& \qquad f_{i}(\alpha x+\beta y) \leq \alpha f_{i}(x)+\beta f_{i}(y) \\
& \text { if } \alpha+\beta=1, \alpha \geq 0, \beta \geq 0
\end{aligned}
$$

- includes least squares problems and linear programs as special cases

Convex optimization problem

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max \left\{n^{3}, n^{2} m, F\right\}$, where F is cost of evaluating f_{i} 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises
local optimization methods (nonlinear programming)

- find a point that minimizes f_{0} among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum
global optimization methods
- find the (global) solution
- worst-case complexity grows exponentially with problem size
these algorithms are often based on solving convex subproblems

Brief history of convex optimization

theory (convex analysis): 1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s \& 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov \& Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- since 2000s: machine learning and statistics

Affine set

line through x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad(\theta \in \mathbf{R})
$$

affine set: contains the line through any two distinct points in the set
example: solution set of linear equations $\{x \mid A x=b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_{1} and x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2}
$$

with $0 \leq \theta \leq 1$
convex set: contains line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
can view this probabilistically as a mixture or expectation
convex hull conv S : set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\theta_{1} \geq 0, \theta_{2} \geq 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

with $P \in \mathbf{S}_{++}^{n}$ (i.e., P symmetric positive definite)

with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is particular norm norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $\{(x, t) \mid\|x\| \leq t\}$
Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

$\left(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq\right.$ is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Operations that preserve convexity

practical methods for establishing convexity of a set C
(1) apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

(2) show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- many others

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^{n}$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
K=\left\{x \in \mathbf{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

Generalized inequalities

generalized inequality defined by a proper cone K :

$$
x \preceq_{K} y \quad \Longleftrightarrow \quad y-x \in K, \quad x \prec_{K} y \quad \Longleftrightarrow \quad y-x \in \operatorname{int} K
$$

examples

- componentwise inequality ($K=\mathbf{R}_{+}^{n}$)

$$
x \preceq \mathbf{R}_{+}^{n} y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

- matrix inequality $\left(K=\mathbf{S}_{+}^{n}\right)$

$$
X \preceq \mathbf{S}_{+}^{n} Y \quad \Longleftrightarrow \quad Y-X \text { positive semidefinite }
$$

these two types are so common that we drop the subscript in \preceq_{K} properties: many properties of \preceq_{K} are similar to \leq on \mathbf{R}, e.g.,

$$
x \preceq_{K} y, \quad u \preceq_{K} v \quad \Longrightarrow \quad x+u \preceq_{K} y+v
$$

Minimum and minimal elements

\preceq_{K} is not in general a linear ordering: we can have $x \preceq_{K} y$ and $y \preceq_{K} x$
$x \in S$ is the minimum element of S with respect to \preceq_{K} if

$$
y \in S \quad \Longrightarrow \quad x \preceq_{K} y
$$

$x \in S$ is a minimal element of S with respect to \preceq_{K} if

$$
y \in S, \quad y \preceq_{K} x \quad \Longrightarrow \quad y=x
$$

example $\left(K=\mathbf{R}_{+}^{2}\right)$
x_{1} is the minimum element of S_{1}
x_{2} is a minimal element of S_{2}

Optimal production frontier

- different production methods use different resources $x \in \mathbf{R}^{n}$
- production set P : resources x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}_{+}^{n}
example ($n=2$)
x_{1}, x_{2}, x_{3} are efficient; x_{4}, x_{5} are not

Convex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Examples on R

convex:

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}
concave:
- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$
2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex
here, $A \succeq 0, A \succ 0$ means A is positive semidefinite, definite respectively

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ (with $P \in \mathbf{S}^{n}$)

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least squares objective: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A)
log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

Epigraph and sublevel set

α-sublevel set of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
\text { epi } f=\left\{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

extension: if f is convex, then

$$
f(\mathrm{E} z) \leq \mathrm{E} f(z)
$$

for any random variable z
useful source of lower bounds
basic inequality is special case with discrete distribution

$$
p(z=x)=\theta, \quad p(z=y)=1-\theta
$$

Verifying convexity

practical methods for establishing convexity of a function
(1) verify definition
(2) for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
(3) show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition

Operations that preserve convexity

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex
e.g., distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Positive weighted sum \& affine composition

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$
sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals) composition with affine function: $f(A x+b)$ is convex if f is convex examples

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- positive part: $(x)_{+}=\max (x, 0)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex ($x_{[i]}$ is i th largest component of x) proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if $\begin{aligned} & g \text { convex, } h \text { convex, } \tilde{h} \text { nondecreasing } \\ & g \text { concave, } h \text { convex, } \tilde{h} \text { nonincreasing }\end{aligned}$

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- note: monotonicity must hold for extended-value extension \tilde{h} examples
- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if g_{i} convex, h convex, \tilde{h} nondecreasing in each argument g_{i} concave, h convex, \tilde{h} nonincreasing in each argument
proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbf{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

$$
f(x) \nabla^{2} f(x) \preceq \nabla f(x) \nabla f(x)^{T}
$$

for all $x \in \operatorname{dom} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave (not easy to show)

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is the optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the objective or cost function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are the equality constraint functions
optimal value:

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$ if problem is unbounded below

Optimal and locally optimal points

x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies the constraints
a feasible x is optimal if $f_{0}(x)=p^{\star} ; X_{\text {opt }}$ is the set of optimal points x is locally optimal if there is an $R>0$ such that x is optimal for

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } z) & f_{0}(z) \\
\text { subject to } & f_{i}(z) \leq 0, \quad i=1, \ldots, m, \quad h_{i}(z)=0, \quad i=1, \ldots, p \\
& \|z-x\|_{2} \leq R
\end{array}
$$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i},
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints ($m=p=0$)
example:

$$
\operatorname{minimize} f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Convex optimization problem

standard form convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

$f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

feasible set of a convex optimization problem is convex any locally optimal point of a convex problem is (globally) optimal

Example

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition): f_{1} is not convex, h_{1} is not affine
- equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal, but there exists a feasible y with $f_{0}(y)<f_{0}(x)$
x locally optimal means there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

consider $z=\theta y+(1-\theta) x$ with $\theta=R /\left(2\|y-x\|_{2}\right)$

- $\|y-x\|_{2}>R$, so $0<\theta<1 / 2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z-x\|_{2}=R / 2$ and

$$
f_{0}(z) \leq \theta f_{0}(y)+(1-\theta) f_{0}(x)<f_{0}(x)
$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_{0}

x is optimal if and only if it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0 \quad \text { for all feasible } y
$$

if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Examples

- unconstrained problem: x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(x)=0
$$

- equality constrained problem

$$
\text { minimize } f_{0}(x) \text { subject to } A x=b
$$

x is optimal if and only if there exists a ν such that

$$
x \in \operatorname{dom} f_{0}, \quad A x=b, \quad \nabla f_{0}(x)+A^{T} \nu=0
$$

- minimization over nonnegative orthant

$$
\text { minimize } f_{0}(x) \text { subject to } x \succeq 0
$$

x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad x \succeq 0, \quad\left\{\begin{aligned}
\nabla f_{0}(x)_{i} \geq 0 & x_{i}=0 \\
\nabla f_{0}(x)_{i}=0 & x_{i}>0
\end{aligned}\right.
$$

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa

- introducing slack variables for linear inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m
\end{array}
$$

Equivalent convex problems

- introducing equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { over } x, y_{i}\right) & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, \quad i=0,1, \ldots, m
\end{array}
$$

- epigraph form: standard form convex problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, t) & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \succeq b, \quad x \succeq 0
\end{array}
$$

piecewise-linear minimization

$$
\operatorname{minimize} \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

equivalent to an LP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize} & -\bar{p}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \succeq 0
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is investment portfolio; x_{i} is fraction invested in asset i
- $p \in \mathbf{R}^{n}$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p}, covariance Σ
- $\bar{p}^{T} x=\mathrm{E} r$ is expected return; $x^{T} \Sigma x=\operatorname{var} r$ is return variance
- $\gamma>0$ is a risk aversion parameter
- problem above is a QP and dates back to Markowitz (1950s)

Vector optimization

general vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

vector objective $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$, minimized w.r.t. proper cone $K \in \mathbf{R}^{q}$
convex vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0} K$-convex (replace \leq with \preceq_{K} in defn.), f_{1}, \ldots, f_{m} convex

Optimal and Pareto optimal points

set of achievable objective values

$$
\mathcal{O}=\left\{f_{0}(x) \mid x \text { feasible }\right\}
$$

- feasible x is optimal if $f_{0}(x)$ is the minimum value of \mathcal{O}
- feasible x is Pareto optimal if $f_{0}(x)$ is a minimal value of \mathcal{O}

Multicriterion optimization

vector optimization problem with $K=\mathbf{R}_{+}^{q}$

$$
f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

- q different objectives F_{i}; roughly speaking we want all F_{i} 's to be small
- feasible x^{\star} is optimal if

$$
y \text { feasible } \Longrightarrow \quad f_{0}\left(x^{\star}\right) \preceq f_{0}(y)
$$

if there exists an optimal point, the objectives are noncompeting

- feasible x^{po} is Pareto optimal if

$$
y \text { feasible, } \quad f_{0}(y) \preceq f_{0}\left(x^{\mathrm{po}}\right) \quad \Longrightarrow \quad f_{0}\left(x^{\mathrm{po}}\right)=f_{0}(y)
$$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least squares

$$
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{R}_{+}^{2}\right) \quad\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right)
$$

example for $A \in \mathbf{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{R}_{+}^{2}\right) & \left(-\bar{p}^{T} x, x^{T} \Sigma x\right) \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \succeq 0
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is investment portfolio; x_{i} is fraction invested in asset i
- $p \in \mathbf{R}^{n}$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p}, covariance Σ
- $\bar{p}^{T} x=\mathrm{E} r$ is expected return; $x^{T} \Sigma x=\operatorname{var} r$ is return variance
example

standard deviation of return

Scalarization

to find Pareto optimal points: choose $\lambda \succeq 0$ and solve scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

if x is optimal for scalar problem, then it is Pareto optimal for vector optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succeq 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$
\lambda^{T} f_{0}(x)=\lambda_{1} F_{1}(x)+\cdots+\lambda_{q} F_{q}(x)
$$

examples

- regularized least squares problem of page 59
take $\lambda=(1, \gamma)$ with $\gamma>0$ minimize $\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}$
for fixed γ, a LS problem

Portfolio optimization with transaction costs

- account for transaction costs incurred in trading activity in objective

$$
-\bar{p}^{T} x+\gamma x^{T} \Sigma x+\kappa \phi\left(x-x_{0}\right)
$$

where x_{0} is the (fixed) initial holdings, $\kappa>0$, and ϕ is a transaction cost function given by

$$
\phi(x)=\sum_{i=1}^{N} \phi_{i}\left(x_{i}\right),
$$

i.e., the sum of the trading costs of the individual assets

- each ϕ_{i} could be modeled as, e.g.,

$$
u \mapsto|u|+\frac{|u|^{3 / 2}}{V^{1 / 2}}
$$

where V is total market volume traded for the asset

- yields a convex problem that is no longer a QP

Portfolio optimization with concentration limit

- add constraint that says that no more than a given fraction ω of the portfolio value can be held in K assets

$$
\sum_{i=1}^{K} x_{[i]} \leq \omega
$$

where lefthand side is sum of K largest post-trade positions

- with $K=20$ and $\omega=0.4$, constraint prohibits holding more than 40% of total portfolio value in any 20 assets
- this constraint is convex and can be handled with standard techniques (not well known among finance practitioners)

