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Convex Optimization



Mathematical optimization

problems of the form

minimize  f(x)
subjectto z €S

convex optimization: minimize a convex function over a convex set

— tractable to solve (even with nonsmooth objective)
— powerful both for theory and practice

nonconvex optimization

— can only find local optima
— choice of algorithm is much more important
— often uses ideas/methods from convex optimization

most slides in this section from S. Boyd and L. Vandenberghe



Mathematical optimization

(mathematical) optimization problem
minimize  fo(z)

subject to  fi(z) <b;, i=1,...,m

e 1 = (x1,...,T,): optimization variables

e fo: R" — R: objective function

e f;:R" =R, i=1,...,m: constraint functions

solution or optimal point =* has smallest value of f; among all vectors
that satisfy the constraints



Examples

portfolio optimization

e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, min. return
e objective: overall risk or return variance

device sizing in electronic circuits
e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, max. area
e objective: power consumption

data fitting
e variables: model parameters
e constraints: prior information, parameter limits
e objective: measure of prediction error, plus regularization term



Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time,
or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

e |east squares problems
e linear programming problems

e convex optimization problems



Least squares

minimize ||Az — b||3

solving least squares problems
e analytical solution: z* = (AT A)~1ATb
e reliable and efficient algorithms and software
e computation time proportional to n’k (A € RkX”); less if structured

e a mature technology

using least squares

o least squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)



Linear programming

minimize Tz

subject to alz <b;, i=1,....m
solving linear programs
e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving £1- or {.-norms, piecewise-linear functions)



Convex optimization problem

minimize  fo(x)
subject to  fi(z) <b;, 1=1,...,m

e objective and constraint functions are convex:

filoax + By) < afi(x) + Bfi(y)
fa+B8=1,a>08>0

e includes least squares problems and linear programs as special cases



Convex optimization problem

solving convex optimization problems

e no analytical solution
o reliable and efficient algorithms

e computation time (roughly) proportional to max{n®,n?m, F'},
where F' is cost of evaluating f;'s and their first and second
derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization



Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)
e find a point that minimizes f; among feasible points near it
e fast, can handle large problems
e require initial guess

e provide no information about distance to (global) optimum

global optimization methods

e find the (global) solution

e worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): 1900-1970

algorithms
e 1947: simplex algorithm for linear programming (Dantzig)

e 1970s: ellipsoid method and other subgradient methods

e 1980s & 90s: polynomial-time interior-point methods for convex
optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)

e since 2000s: many methods for large-scale convex optimization

applications
e before 1990: mostly in operations research, a few in engineering

e since 1990: many applications in engineering (control, signal
processing, communications, circuit design, ...)

e since 2000s: machine learning and statistics
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Affine set

line through z1, x5: all points

x=0x;+ (1 —0)xs (0 €R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {z | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x; and x5: all points
=0z + (1 —0)xs
with0 <6 <1
convex set: contains line segment between any two points in the set
1,29 €C, 0<0<1 = Or1+(1—-0)z2el’

examples (one convex, two nonconvex sets)

]
L ]
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Convex combination and convex hull

convex combination of x1,..., x;: any point x of the form
562811'1 +921’2++0k$k

with0y +---4+60,=1,0,>0

can view this probabilistically as a mixture or expectation

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of z; and x2: any point of the form
r = 0121 + 0329

with 6, >0, 8, > 0

1

convex cone: set that contains all conic combinations of points in the
set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a”2 = b} (a # 0)

a

atz=5b

halfspace: set of the form {z | a”x < b} (a # 0)

a
T
N r>b

ar<b

e ¢ is the normal vector
e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius 7:
Bxe,r) = {z | [l — el <7} = {ze +ruf|ulls <1}
ellipsoid: set of the form
{z|(x—z)" P (z—2.) <1}

with P € S}y, (i.e., P symmetric positive definite)

with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies
o |[z|| > 0; ||zl =0if and only if x =0
o |[tx| = [t|||z]| for t € R
o llz+yll < llzll + llyll

notation: | - || is general (unspecified) norm; || - ||symb is particular norm

norm ball with center z. and radius r: {z | ||z — z.|| < r}

norm cone: {(z,t) | ||z| <t}

Euclidean norm cone is called second-
order cone

o

norm balls and cones are convex
18



Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities
Ax =b, Cx=d
(A e R™ ™ C e RP*" =< is componentwise inequality)
al

a2

as
as

aq

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Operations that preserve convexity

practical methods for establishing convexity of a set C
@ apply definition
r,r9€C, 0<60<1 — 9$1+(1—9)$2€C

@ show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, ...) by operations that preserve convexity

— intersection
— many others
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Generalized inequalities

a convex cone K C R" is a proper cone if
e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples
e nonnegative orthant K =R} = {zr ¢ R" | 2; >0, i =1,...,n}
e positive semidefinite cone K =S’}

e nonnegative polynomials on [0, 1]:

K={x€R" |z +aot + a3t + -+ 2,t" " >0 for t €[0,1]}
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Generalized inequalities

generalized inequality defined by a proper cone K:

T3y = y—zekK, r<Kgy <= y—zrcintk

examples
e componentwise inequality (K = R})
$5R7+L y = x; <y, t=1,...,n
e matrix inequality (K = S/)
X 551 Y <<= Y — X positive semidefinite

these two types are so common that we drop the subscript in <

properties: many properties of <y are similar to < on R, e.g,,

T2kgY, UKV = TH+uXKY+ov
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Minimum and minimal elements

<k is not in general a linear ordering: we can have x Ax y and y Ak «
x € S is the minimum element of S with respect to < if

yes = x=ky

x € S is @ minimal element of S with respect to < if

yes, y=xr = y==z

example (K = R?)

21 is the minimum element of S
xo is a minimal element of Sy
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Optimal production frontier

o different production methods use different resources x € R"

e production set P: resources x for all possible production methods

o efficient (Pareto optimal) methods correspond to resource vectors x

that are minimal w.r.t. R,
example (n = 2)

1, o, T3 are efficient; x4, x5 are not

fuel

o X5 T4

labor
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Convex functions

f:R™ = Ris convex if dom f is a convex set and

[0z +(1—=0)y) <0f(x)+(1-0)f(y)

forall z,y €cdom f,0<6<1

(v, f(y))
(2, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

[0z +(1=0)y) <Of(x)+ (1 -0)f(y)

forz,yedomf, z#y, 0<60<1
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Examples on R

convex:

affine: ax + b on R, for any a,b € R
e exponential: ¢®®, for any a € R
e powers: z* on R4, fora>1lora <0
e powers of absolute value: |z|P on R, for p > 1
e negative entropy: xlogx on Ry
concave:
o affine: az 4+ b on R, for any a,b € R
e powers: z* on Ry, for 0 <a <1

e logarithm: logz on R4
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Extended-value extension

extended-value extension f of f is

f(z) = f(z), xedomf, f(z) =00, z¢domf

often simplifies notation; for example, the condition
0<0<1 = f(0x+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {o0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,

0<0<1 = f(B+(1—0)y) <0f(x)+(1—0)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

s - (2.2 o1)

exists at each = € dom f

1st-order condition: differentiable f with convex domain is convex iff

fy) > f(@) +Vf@) ' (y—x) forall z,y € dom f

f@)+ V()" (y - )

(z, f(x))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and Hessian V2 f(z) € S”,

_ P f(=)
- 81‘1‘833]‘7

V2 f(2)i ij=1,...,n,

exists at each = € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if
V2f(z) =0 forall 2 € dom f

o if V2f(x) = 0 for all z € dom f, then f is strictly convex

here, A = 0, A = 0 means A is positive semidefinite, definite respectively
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Examples

quadratic function: f(z) = (1/2)27 Pz + ¢Tx + r (with P € S™)
Vf(x)=Pzr+yq, V2f(x) =P

convex if P >0

least squares objective: f(x) = | Az — b3
Vf(z) =2AT(Az —b), V2f(z) =247 A

convex (for any A)

log-sum-exp: f(z) =log Y ,_, expzy is convex
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Epigraph and sublevel set

a-sublevel set of f: R" — R:
Co={redomf] f(z) <a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:

epif = {(z,t) e R"' |z e dom f, f(x) <1t}

epi f

f is convex if and only if epi f is a convex set
31



Jensen’s inequality

basic inequality: if f is convex, then for 0 <6 <1,

f0z+ (1—0)y) <0f(x)+(1—0)f(y)

extension: if f is convex, then

f(Ez) <Ef(z)

for any random variable z

useful source of lower bounds
basic inequality is special case with discrete distribution

plz=2)=0, plr=y)=1-10
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Verifying convexity

practical methods for establishing convexity of a function
@ verify definition
@ for twice differentiable functions, show V2 f(x) =0
© show that f is obtained from simple convex functions by operations

that preserve convexity

— nonnegative weighted sum

— composition with affine function

— pointwise maximum and supremum
— composition



Operations that preserve convexity

nonnegative multiple: a.f is convex if f is convex, a >0

sum: f1 + fo convex if f1, fo convex (extends to infinite sums, integrals)
composition with affine function: f(Axz + b) is convex if f is convex

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fim(x)} is convex

if f(z,y) is convex in (z,y) and C is a convex set, then

g(z) = yiggf(w, Y)

is convex

e.g., distance to a set: dist(z,S) = infyecg ||z — y|| is convex if S is
convex
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Positive weighted sum & affine composition

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if fi1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Az + b) is convex if f is convex

examples
e log barrier for linear inequalities

flz)=— Zlog(bi—aiTx), dom f = {z|a]x<b,i=1,...,m}
i=1

e (any) norm of affine function: f(z) = ||Ax + b|
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex
examples
e piecewise-linear function: f(x) = maxizL,,_,m(aiTx + b;) is convex
e positive part: ()1 = max(x,0) is convex
e sum of r largest components of x € R™:
f(l‘) = + Z[2) + -+ Z[r)
is convex (x; is ith largest component of x)

proof:
fl@)=max{z; + iy, + - +a; |1 <ig <ig<--- <i, <n}
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Composition with scalar functions

composition of g: R® - Rand h: R - R:

. .. g convex, h convex, h nondecreasing
f is convex if ~ ) )
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f'(x) = 1" (g(x))g'(2)* + h'(g(x))g" (x)
e note: monotonicity must hold for extended-value extension &

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R” = R* and h: R* = R:
f(@) = h(g(x)) = h(g1(x), g2 (), ..., gr(x))

¢ 9i convex, h convex, h nondecreasing in each argument

f is convex i . L
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f'(x) = ' ()" V?h(g(2))g' (z) + Vh(g(x))"g" (z)

examples

o > loggi(z) is concave if g; are concave and positive

e log 7" exp gi(x) is convex if g; are convex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
FOz + (1= 0)y) > f(2)°f(y)'" for0<o<1

f is log-convex if log f is convex

e powers: % on Ry, is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

@) = L o @=L (@5)
(2m)ndet &

cumulative Gaussian distribution function ® is log-concave
1 * 2
@(m):—/ e /2 du
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Properties of log-concave functions

twice differentiable f with convex domain is log-concave if and only
if
@)V f(z) 2 V@)V f(x)"
for all x € dom f
product of log-concave functions is log-concave

sum of log-concave functions is not always log-concave

integration: if f: R" x R™ — R is log-concave, then

g(x) = /f(x, y) dy

is log-concave (not easy to show)
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Optimization problem in standard form

minimize  fo(x)
subject to  fi(z) <

e x € R" is the optimization variable

e fo: R" — R is the objective or cost function

e f;:R®" =R, i=1,...,m, are the inequality constraint functions
e h; : R™ — R are the equality constraint functions

optimal value:

p* =inf{fo(x) | fi(z) <0, i=1,...,m, hi(z) =0, i=1,...,p}

e p* = oo if problem is infeasible (no « satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x € dom f; and it satisfies the constraints

a feasible z is optimal if fo(x) = p*; Xops is the set of optimal points

x is locally optimal if there is an R > 0 such that z is optimal for
minimize (over z)  fo(2)

subject to fi(z) <0, i=1,...,m, hi(z)=0, i=1,...,p
[z —zl2 <R
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Implicit constraints

the standard form optimization problem has an implicit constraint

m p
re€D=()domf; N [)domh;,

=0 i=1

e we call D the domain of the problem

e the constraints f;(z) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints
(m=p=0)

example:
minimize fo(z) = — Zi-c:l log(b; — a x)

is an unconstrained problem with implicit constraints al = < b;
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Convex optimization problem

standard form convex optimization problem

minimize  fo(z)
subject to fl(:c) i=1,....m
ax—bz, i=1,...,p

fo, f1, ..., fm are convex; equality constraints are affine

often written as

minimize  fo(x)
subject to fl( )<0, i=1,...,m
Ax =b

feasible set of a convex optimization problem is convex

any locally optimal point of a convex problem is (globally) optimal
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Example

minimize  fo(x) = 23 + 23
subject to  fi(z) =x1/(1+23) <0
hi(z) = (21 +22)* =0

o fo is convex; feasible set {(z1,x2) | 11 = —x2 < 0} is convex

e not a convex problem (according to our definition): f; is not
convex, hi is not affine

e equivalent (but not identical) to the convex problem

minimize % + 3
subjectto x1; <0
x1+x9=0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose z is locally optimal, but there exists a feasible y with
fo(y) < folz)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|2 <R = fo(z) > fo(x)

consider z = 0y + (1 — 0)x with 8 = R/(2|ly — x||2)

e ly—zl]a >R s00<0<1/2
e 2 is a convex combination of two feasible points, hence also feasible
e ||z—x|2=R/2 and

fo(2) < 0fo(y) + (1 = 0) fol(x) < folx)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f,

x is optimal if and only if it is feasible and

Vo(x)T(y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at «
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Examples

unconstrained problem: z is optimal if and only if
z € dom [y, Vfo(z)=0

equality constrained problem

minimize fo(z) subjectto Az =19
x is optimal if and only if there exists a v such that

x € dom fy, Az = b, Vio(z) + ATv =0

minimization over nonnegative orthant

minimize fo(z) subjectto x>0
x is optimal if and only if

Vfo(x); 20 ;=0

r e€domfy,  x=0, { Vfo(z)i =0 x>0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily

obtained from the solution of the other, and vice-versa
e introducing slack variables for linear inequalities

minimize  fo(z)
subject to afx <b;, i=1,....m

is equivalent to

minimize (over z, s) fo(x)

subject to afz +s;=b;, i=1,...

$, >0, 1=1,...m
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Equivalent convex problems

e introducing equality constraints

minimize  fo(Aox + bo)
subject to  fi(A;x+b;) <0, i=1,...,m

is equivalent to

minimize (over x, y;) fo(vo)
subject to fily)) <0, i=1,...,m
yi=Aix+0b;, i=0,1,...,m

o epigraph form: standard form convex problem is equivalent to

minimize (over z, t) t
subject to fo(x)
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Linear program (LP)

minimize Tz +d
subject to Gz <X h
Az =D

e convex problem with affine objective and constraint functions
o feasible set is a polyhedron
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Examples

diet problem: choose quantities x1, ..., x, of n foods
e one unit of food j costs ¢, contains amount a;; of nutrient ¢
e healthy diet requires nutrient ¢ in quantity at least b;

to find cheapest healthy diet,

minimize Tz

subjectto Ax >b, x>0

piecewise-linear minimization
minimize maxi:h“,m(a?z +b;)
equivalent to an LP

minimize t
subject to alz+b;<t, i=1,...,m
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Quadratic program (QP)

minimize  (1/2)zT Pz + ¢z +r
subject to Gz X h
Ax =b

e P €S’ so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

A , , p
S , / .
,
P / /
’ *
' / ’ / \V4
J , / ; ' olx
I |
I ) '
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Portfolio optimization

minimize —plx + ' B2
subject to 1Tz =1, x>0
x € R™ is investment portfolio; x; is fraction invested in asset 4

p € R™ is vector of relative asset price changes; modeled as a
random variable with mean p, covariance %

pLa = Er is expected return; 732 = varr is return variance

~ > 0 is a risk aversion parameter

problem above is a QP and dates back to Markowitz (1950s)
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Vector optimization

general vector optimization problem

minimize (w.r.t. K) fo(x)
subject to fl(x) <0, i=1,....,m

vector objective fy : R™ — RY, minimized w.r.t. proper cone K € R?

convex vector optimization problem

minimize (w.r.t. K) fo(x)

subject to filz) <0, i=1,...,m
Ar =D
with fo K-convex (replace < with <k in defn.), f1, ..., fm convex
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Optimal and Pareto optimal points

set of achievable objective values

O = {fo(x) | x feasible}

e feasible x is optimal if fy(x) is the minimum value of O

e feasible x is Pareto optimal if fy(x) is a minimal value of O

fo(z"°)

fo(z7)

x* is optimal 2P° is Pareto optimal
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Multicriterion optimization

vector optimization problem with K = R%

fola) = (Fu(x), ..., Fy())

e ¢ different objectives Fj; roughly speaking we want all F;'s to be
small

e feasible z* is optimal if

y feasible = fo(z*) < fo(y)
if there exists an optimal point, the objectives are noncompeting
o feasible xP° is Pareto optimal if
y feasible,  fo(y) = fo(z*) = fo(z®°) = fo(y)

if there are multiple Pareto optimal values, there is a trade-off
between the objectives
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Regularized least squares

minimize (w.r.t. R%) (||Az — b3, |z|2)

25

a2 o
=
— 15
Il
Ol
~—
™
Ko
0 *
0 10 20 30 40 50

Fy(z) = [[ Az — b3

example for A € R190*10. heavy line is formed by Pareto optimal points
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Risk return trade-off in portfolio optimization

minimize (w.r.t. Rf_) (—pTx,2TSx)
subject to 17z =1, >0

e r € R" is investment portfolio; x; is fraction invested in asset 4

e p € R" is vector of relative asset price changes; modeled as a
random variable with mean p, covariance X

o pTz = Er is expected return; 7 Xz = varr is return variance

example
15% 1

10%

allocation x

5%

mean return

0%
0% 10% 20% 0% 10% 20%

standard deviation of return standard deviation of return 59



Scalarization

to find Pareto optimal points: choose A = 0 and solve scalar problem

minimize A fy(x)
subject to  f;(x) <0, i=1,...,m
hL(ZZ?)ZO, iZl,...,p

if « is optimal for scalar problem,
then it is Pareto optimal for vector
optimization problem

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying A = 0
60



Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum
M fo(x) = MFL(@) + - - + AgFy()

examples

o regularized least squares problem of page 59
20

take A = (1,v) with v > 0 *
minimize [|Az — 0|3 + [} E"
5F

for fixed 7, a LS problem

20
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Portfolio optimization with transaction costs

e account for transaction costs incurred in trading activity in objective
—plx + vzl S + ke(x — x0)

where xg is the (fixed) initial holdings, x > 0, and ¢ is a transaction
cost function given by

N
d(a) = di(w),
i=1
i.e., the sum of the trading costs of the individual assets
e each ¢; could be modeled as, e.g.,

|u|3/2

ur—>|u|+m

where V' is total market volume traded for the asset

e yields a convex problem that is no longer a QP
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Portfolio optimization with concentration limit

add constraint that says that no more than a given fraction w of the
portfolio value can be held in K assets

K
> o Sw
i=1

where lefthand side is sum of K largest post-trade positions

with K = 20 and w = 0.4, constraint prohibits holding more than
40% of total portfolio value in any 20 assets

this constraint is convex and can be handled with standard
techniques (not well known among finance practitioners)
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