Machine Learning for Finance

Neal Parikh

Cornell University

Spring 2018

Convex Optimization

Mathematical optimization

problems of the form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in S \end{array}$

- convex optimization: minimize a convex function over a convex set
 - tractable to solve (even with nonsmooth objective)
 - powerful both for theory and practice
- nonconvex optimization
 - can only find local optima
 - choice of algorithm is much more important
 - often uses ideas/methods from convex optimization
- most slides in this section from S. Boyd and L. Vandenberghe

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i=1,\ldots,m$

• $x = (x_1, \ldots, x_n)$: optimization variables

- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

solution or optimal point x^* has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- · variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, min. return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, max. area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of prediction error, plus regularization term

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

- least squares problems
- linear programming problems
- convex optimization problems

Least squares

minimize
$$||Ax - b||_2^2$$

solving least squares problems

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least squares

- least squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, \dots, m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

 $\text{if }\alpha+\beta=1\text{, }\alpha\geq0\text{, }\beta\geq0$

• includes least squares problems and linear programs as special cases

Convex optimization problem

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- since 2000s: machine learning and statistics

Affine set

line through x_1 , x_2 : all points

 $\mathsf{PSfrag replacements}_{x} = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \leq \theta \leq 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

can view this probabilistically as a mixture or expectation

convex hull $\mathbf{conv} S$: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

 $\ensuremath{\textit{convex cone}}$: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, *P* symmetric positive definite)

with \boldsymbol{A} square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x+y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm norm ball with center x_c and radius r: $\{x \mid \|x - x_c\| \le r\}$

```
norm cone: \{(x,t) \mid ||x|| \le t\}
```

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Operations that preserve convexity

practical methods for establishing convexity of a set ${\boldsymbol{C}}$

apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - many others

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{ x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

Generalized inequalities

generalized inequality defined by a proper cone *K*:

 $x \preceq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \operatorname{int} K$

examples

• componentwise inequality $(K = \mathbf{R}^n_+)$

$$x \preceq_{\mathbf{R}^n_+} y \quad \Longleftrightarrow \quad x_i \le y_i, \quad i = 1, \dots, n$$

• matrix inequality
$$(K = \mathbf{S}^n_+)$$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_K **properties:** many properties of \preceq_K are similar to \leq on **R**, *e.g.*,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \preceq_K y$$

 $x \in S$ is a minimal element of S with respect to \preceq_K if

$$y \in S, \quad y \preceq_K x \implies y = x$$

Optimal production frontier

- different production methods use different resources $x \in \mathbf{R}^n$
- production set P: resources x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is a convex set and $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x,y\in \operatorname{\mathbf{dom}} f$, $x\neq y$, $0<\theta<1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on $\mathbf{R}_{++},$ for $0\leq\alpha\leq1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\textbf{R}\cup\{\infty\}),$ means the same as the two conditions

- dom f is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$abla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{for all } x, y \in \operatorname{\mathbf{dom}} f$$

placements f(y)(x, f(x))first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if dom f is open and Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

here, $A \succeq 0$, $A \succ 0$ means A is positive semidefinite, definite respectively

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$) $\nabla f(x) = P x + q$, $\nabla^2 f(x) = P$

convex if $P \succeq 0$

least squares objective: $f(x) = ||Ax - b||_2^2$

convex (for any A)

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

Epigraph and sublevel set

 α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$:

$$C_{\alpha} = \{ x \in \operatorname{\mathbf{dom}} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbf{R}^n \to \mathbf{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}z) \le \mathbf{E}f(z)$$

for any random variable z

useful source of lower bounds

basic inequality is special case with discrete distribution

$$p(z = x) = \theta, \qquad p(z = y) = 1 - \theta$$

Verifying convexity

practical methods for establishing convexity of a function

- verify definition
- **2** for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

Show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition

Operations that preserve convexity

nonnegative multiple: αf is convex if f is convex, $\alpha \ge 0$ sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

e.g., distance to a set: ${\rm dist}(x,S)=\inf_{y\in S}\|x-y\|$ is convex if S is convex

Positive weighted sum & affine composition

nonnegative multiple: αf is convex if f is convex, $\alpha \ge 0$ **sum:** $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) **composition with affine function**: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \qquad \mathbf{dom} \ f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- positive part: $(x)_+ = \max(x, 0)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(\boldsymbol{x}) = h(g(\boldsymbol{x}))$$

 $f \text{ is convex if } \begin{array}{l} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex}, \ h \text{ convex}, \ \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave}, \ h \text{ convex}, \ \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta} \quad \text{for } 0 \le \theta \le 1$$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

• cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T$$

for all $x \in \operatorname{\mathbf{dom}} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, \ i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{\mathbf{dom}} f_0$ and it satisfies the constraints
- a feasible x is optimal if $f_0(x) = p^\star; X_{\rm opt}$ is the set of optimal points
- \boldsymbol{x} is **locally optimal** if there is an R>0 such that \boldsymbol{x} is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- we call ${\mathcal D}$ the domain of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

 f_0, f_1, \ldots, f_m are convex; equality constraints are affine often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$
 $Ax = b$

feasible set of a convex optimization problem is convex any locally optimal point of a convex problem is (globally) optimal

Example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \mbox{minimize} & x_1^2+x_2^2\\ \mbox{subject to} & x_1\leq 0\\ & x_1+x_2=0 \end{array}$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal **proof**: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$

 \boldsymbol{x} locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta) x$ with $\theta = R/(2\|y - x\|_2)$

- $||y x||_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

 \boldsymbol{x} is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \geq 0 \quad \text{for all feasible } y$

if nonzero, $abla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Examples

• unconstrained problem: x is optimal if and only if

 $x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$

equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

 \boldsymbol{x} is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$

is equivalent to

minimize (over x, s)
$$f_0(x)$$

subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$
 $s_i \ge 0, \quad i = 1, \dots, m$

Equivalent convex problems

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

• epigraph form: standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t
subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$$

piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m}(a_i^T x + b_i)$$

equivalent to an LP

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & a_i^T x + b_i \leq t, \quad i = 1, \dots, m \end{array}$$

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Portfolio optimization

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

- $x \in \mathbf{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E}r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance
- $\gamma > 0$ is a risk aversion parameter
- problem above is a QP and dates back to Markowitz (1950s)

Vector optimization

general vector optimization problem

$$\begin{array}{ll} \text{minimize (w.r.t. } K) & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

vector objective $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

with f_0 K-convex (replace \leq with \leq_K in defn.), f_1, \ldots, f_m convex

Optimal and Pareto optimal points

set of achievable objective values

 $\mathcal{O} = \{f_0(x) \mid x \text{ feasible}\}\$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of $\mathcal O$
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}^q_+$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^{\star} is optimal if

$$y \text{ feasible} \implies f_0(x^\star) \preceq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

• feasible x^{po} is Pareto optimal if

$$y \text{ feasible}, \quad f_0(y) \preceq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least squares

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) ($||Ax - b||_2^2, ||x||_2^2$)

example for $A \in \mathbf{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) $(-\bar{p}^T x, x^T \Sigma x)$
subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

- $x \in \mathbf{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with meshap, representation Σ

• $\bar{p}^Tx = \mathrm{E}r$ is expected return; $x^T\Sigma x = \mathbf{var}\,r$ is return variance PSfrag replacements example

Scalarization

to find Pareto optimal points: choose $\lambda \succeq 0$ and solve scalar problem

$$\begin{array}{ll} \mbox{minimize} & \lambda^T f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succeq 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

examples

• regularized least squares problem of page 59

Portfolio optimization with transaction costs

· account for transaction costs incurred in trading activity in objective

$$-\bar{p}^T x + \gamma x^T \Sigma x + \kappa \phi(x - x_0)$$

where x_0 is the (fixed) initial holdings, $\kappa > 0$, and ϕ is a transaction cost function given by

$$\phi(x) = \sum_{i=1}^{N} \phi_i(x_i),$$

i.e., the sum of the trading costs of the individual assets

• each ϕ_i could be modeled as, *e.g.*,

$$u \mapsto |u| + \frac{|u|^{3/2}}{V^{1/2}}$$

where \boldsymbol{V} is total market volume traded for the asset

• yields a convex problem that is no longer a QP

Portfolio optimization with concentration limit

- add constraint that says that no more than a given fraction ω of the portfolio value can be held in K assets

$$\sum_{i=1}^{K} x_{[i]} \le \omega$$

where lefthand side is sum of \boldsymbol{K} largest post-trade positions

- with K = 20 and $\omega = 0.4$, constraint prohibits holding more than 40% of total portfolio value in any 20 assets
- this constraint is convex and can be handled with standard techniques (not well known among finance practitioners)