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Supervised learning



Supervised learning

• suppose x ∈ Rn and y ∈ R believed to be related by some unknown
function f : Rn → R such that y ≈ f(x)

• the function f is unknown, but we have sample/training data

D = {(x1, y1), (x2, y2), . . . , (xN , yN )}

– xi: feature vector, inputs, predictors, . . .
– yi: outcome, response, output, . . .
– (xi, yi): training example, observation, sample, measurement, . . .

• use D to construct (learn, fit, estimate, . . . ) a model f̂ : Rn → R so

y ≈ ŷ = f̂(x)
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Regression

• regression refers to case when y ∈ R

• variety of approaches, but the most standard are linear:

f̂(x) = wTx

where w ∈ Rn are weights or parameters

• generally only care about the model being linear in the parameters:

f̂(x) = w1f1(x) + · · ·wKfK(x),

where fi : R
n → R are feature mappings or basis functions

• goal is to find ŵ ∈ Rn for which residuals (prediction errors)
ri = ŷi − yi are reasonably small
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Classification

• classification refers to case when y ∈ [K] = {1, . . . ,K}, with K = 2
called binary classification

• in this case, model f̂ also called a classifier

• consider input space divided into regions based on classification

– regions are called decision regions
– boundaries of decision regions are called decision boundaries
– decision boundaries can be rough or smooth
– if decision boundaries are linear, model is a linear classifier

• surprising variety of methods yield linear classifiers

• if dataset can be separated exactly by a linear classifier, it is called
linearly separable
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Approaches to classification

• probabilistic model: estimate the conditional probability distribution
p(y |x), then use this distribution to classify new points

– generative model: model the joint distribution p(x, y), usually by
modeling p(x | y) and p(y), and derive p(y |x) via Bayes’ rule

– discriminative model: directly model the conditional distribution
p(y = k |x) only

• non-probabilistic model: construct a function to directly assign each x
to a class, e.g., by directly placing a decision boundary somewhere in the
space according to some criterion
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Linear regression



Linear regression

• consider training set

D = {(x1, y1), . . . , (xN , yN )}, xi ∈ Rn, yi ∈ R

• model: assume y is a linear function of x

f̂(x) = wTx = w0 + w1x1 + · · ·+ wnxn

or linear combination of basis functions fi of x

• either include a constant 1 in x or use separate term w0

• now need to choose w according to some criterion

6



Least squares

• optimal weights ŵ ∈ Rn are the solution to

minimize ‖Xw − y‖22

where X ∈ RN×n, y ∈ RN ; row i of feature matrix X given by xi

• objective is equivalent to the residual sum of squares

‖Xw − y‖22 =
N
∑

i=1

(wTxi − yi)
2,

• an unconstrained convex QP with the closed form solution

w⋆ = (XTX)−1XT y

assuming the columns of X are linearly independent
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Constant fit
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The constant fit f̂(x) = avg(yd) to N = 20 data points and a scatter plot of ŷ(i)

versus y(i).
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Example

x

f̂(x)

Straight-line fit to 50 points (x(i), y(i)) in a plane.
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Probabilistic interpretation

• consider the probabilistic model

yi = wTxi + ǫi

where ǫi is an error term capturing unmodeled effects or noise

• assume that the ǫi are i.i.d. normal:

ǫi ∼ N(0, σ2), p(ǫi) =
1√
2πσ

exp

(

− ǫ2i
2σ2

)

• this implies that yi |xi ∼ N(wTxi, σ
2) with parameter w, i.e.,

p(yi |xi;w) =
1√
2πσ

exp

(

− (yi − wTxi)
2

2σ2

)
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Maximum likelihood estimation

• how to estimate parameters w of a probabilistic model (choose in a
parameterized family of probability distributions)?

• several approaches, but the most classical is the method of maximum
likelihood

• likelihood function is the probability of the data, viewed as a function
of the (unknown) weights w

L(w) = p(y |x1, . . . , xN ;w)

• maximum likelihood: choose w to maximize L

• i.e., choose w that makes the observed data D the most likely to have
been generated under the model assumptions
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Maximum likelihood estimation

• since error terms are assumed independent, the likelihood decomposes as

L(w) =
N
∏

i=1

p(yi |xi;w)

• typically maximize the log-likelihood instead

ℓ(w) = logL(w) =

N
∑

i=1

log p(yi |xi;w)

• if ℓ is concave, then this yields a convex problem (though not relevant,
usually has no closed form solution)
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Maximum likelihood estimation for linear regression

• note that

log p(yi |xi;w) = log
1√
2πσ

− 1

2σ2
(wTxi − yi)

2

so maximizing ℓ reduces to minimizing

N
∑

i=1

(wTxi − yi)
2

after removing irrelevant constants; i.e., least squares objective

• under the previous assumptions, the least squares estimator is also the
maximum likelihood estimator for w
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Capital asset pricing model

• observe market returns x = (rm1 , . . . , rmT ) and individual asset returns
y = (ri1, . . . , r

i
T ) over some period of length T

• regress individual returns onto market returns

f̂(x) = (rrf + α) + β(x− µmkt)

– rrf is the risk-free interest rate over the period
– µmkt = avg(x) is the average market return

• a linear regression model f̂(x) = w1 + w2x with

w1 = rrf + α− βµmkt, w2 = β

• prediction of asset return has two components:

– constant rrf + α, where α is average asset return over risk-free rate
– a proportion β of de-meaned market performance x− µmkt
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Time series

• suppose data is a series of samples of quantity y at time xi = i

• trend line is linear fit to the time series data

ŷi = w1 + w2i

• slope w2 is interpreted as the trend in the quantity over time

• subtrating the trend line from original time series gives de-trended time
series

• can extend further to handle seasonal components
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Autoregressive time series
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Hourly temperature at Los Angeles International Airport between 12:53AM on May
1, 2016, and 11:53PM on May 5, 2016, shown as circles. The solid line is the
prediction of an auto-regressive model with eight coefficients. From Boyd &
Vandenberghe.
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Polynomial regression

• consider basis functions

fi(x) = xi−1, i = 1, . . . , p,

so f̂ is a polynomial of degree at most p− 1:

f̂(x) = w1 + w2x+ · · ·+ wpx
p−1

• smallest residuals given by the highest degree polynomial, but generally
don’t want to choose this (will overfit the data)
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Polynomial regression
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Least squares polynomial fits of degree 2, 6, 10, and 15 to 100 points. From Boyd
& Vandenberghe.
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Feature engineering

• an important topic we will not emphasize in this course

• transforming features

– standardizing / whitening

– Winsorizing

– log transform

– P/E ratio

– TFIDF

• adding new features

– one-hot encoding of categorical features

– product and interaction terms

– nonlinear transforms

– stratified models
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Logistic regression



Binary classification

• consider training set

D = {(x1, y1), . . . , (xN , yN )}, xi ∈ Rn, yi ∈ {0, 1}

• idea: instead of assuming y ≈ wTx, transform wTx to lie in the interval
[0, 1]

y ≈ s(wTx), s(z) =
1

1 + exp(−z)

where s is the logistic function or sigmoid function

• will see that approach of using a nonlinear transformation of a linear
function will recur repeatedly

• for now, choice of s is fairly arbitrary, but variety of motivations
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Sigmoid and logit functions

• sigmoid/logistic function takes the form

s(x) =
1

1 + exp(−x)

• its inverse is the logit function

s−1(p) = log
p

1− p
, p ∈ (0, 1)

also known as the log odds ratio

• these functions will appear repeatedly
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Probabilistic formulation

• logistic regression model assumes

p(y = 1 |x;w) = s(wTx)

here, s(wTx) is interpreted as a probability that y = 1

• likelihood function can be written as

L(w) =
N
∏

i=1

p(yi |xi;w) =
N
∏

i=1

s(wTxi)
yi(1− s(wTxi))

1−yi

so the log-likelihood is

ℓ(w) =
N
∑

i=1

yi log s(w
Txi) + (1− yi) log(1− s(wTxi))

• maximizing ℓ is a convex problem
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Log odds formulation

• alternatively, assuming that the log odds is a linear function

log
p(y = 1 |x)
p(y = 0 |x) = wTx

implies that

p(y = 1 |x) = 1

1 + exp(−wTx)
= s(wTx)
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Logistic regression as linear classifier

• if p(y = 1 |x) > p(y = 0 |x), classify point as y = 1

• i.e., decision boundary is set of points for which log odds are zero

{x | s−1(p(y = 1 |x)) = 0} = {x | wTx = 0}

a hyperplane giving a linear decision boundary

• if any monotone transformation (here, logit) of p(y = k |x) is linear,
then classifier has linear decision boundaries

• corresponds to probability of either class being 1/2, but can adjust to
other thresholds if there’s asymmetric cost in different classification
errors

• can also use the output p(y = 1 |x) directly, if goal is to predict a
probability rather than making a decision
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Example
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Example
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Convex approximation to 0-1 loss

• suppose y ∈ {−1, 1}; want to choose f so sign f(x) matches y

• consider choosing f to minimize

1

N

N
∑

i=1

[yif(xi) ≤ 0]

– [u ≤ 0] is 0-1 loss
– ui = yif(xi) is the margin; errors correspond to ui < 0
– amounts to minimizing (empirical) probability that y 6= sign f(x)

• problem: 0-1 loss is nonconvex and so not easy to optimize

• idea: use a convex upper bound as an approximation
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Convex approximation to 0-1 loss
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Logistic regression with quadratic basis functions

29



Ad click-through rate prediction

• digital ad revenue: $200B+/year (Google: ∼$70B, 95%+ of total)

• key task: click-through rate (CTR) prediction

• given user search query, initial set of candidate ads is matched based on
advertiser-chosen keywords

• use auctions to determine

– whether these ads are chosen to the user

– what order they’re shown in

– what prices advertisers pay if their ad is clicked

• inputs for auction mechanism

– advertiser bids

– estimate of CTR p(c = 1 | q, a) for click c ∈ {0, 1}, query q, ad a

• billions of features and examples, predict/update billions times/day

30



Exponential Families and

Generalized Linear Models



Generalizing linear and logistic regression

• so far, considered two models:

linear regression (y ∈ R): y |x ∼ N(µ, σ2)

logistic regression (y binary): y |x ∼ Bernoulli(φ)

• want to generalize these models to work for other kinds of distributions
and types of response variables

• observe the following properties of the models above:

1 model y |x ∼ F (θ), where F is some distribution

2 prediction rule is f̂(x) = E[y |x]

3 E[y |x] given by the model parameters µ and φ above

4 these ‘mean’ parameters are modeled as g(wTx), for some g
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Generalized linear models

• generalized linear models follow essentially the same structure and
include linear and logistic regression as special cases

• based on letting F be any member of the exponential family, a very
large class of distributions with many convenient properties

• include most of the distributions one uses, e.g., Gaussian, exponential,
gamma, beta, Bernoulli, Dirichlet, categorical, Poisson, multinomial
(with fixed number of trials), . . .

• have various definitions of increasing generality, so will start with simpler
special cases and build from there
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Exponential families

class of distributions is in the exponential family if

p(y; θ) ∝ exp(θy)

=
1

Z(θ)
exp(θy)

• θ ∈ R is the natural parameter

• Z(θ) is the normalization constant or partition function

often written as
p(y; θ) = exp(θy −A(θ))

where A(θ) = logZ(θ) is the log partition function
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Exponential families

exponential families have many useful properties, e.g.:

• log partition function is convex in θ

A(θ) = log

∫

exp(θy) dy

so maximizing the log likelihood

log p(y; θ) = θy −A(θ)

is a convex optimization problem

• mean of the distribution is given by

E[y] =
d

dθ
A(θ)
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Bernoulli distribution

• recall that if z ∼ Bernoulli(φ), then

p(z = 1;φ) = φ

p(z = 0;φ) = 1− φ

a distribution over {0, 1} parameterized by φ ∈ [0, 1]

• often use the fact that
exp(log(x)) = x

e.g., by applying exp · log to the ‘usual’ parametrization of the density
function and rearranging
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Bernoulli distribution

• rewrite Bernoulli density

p(z;φ) = φz(1− φ)1−z

= exp log(φz(1− φ)1−z)

= exp

((

log
φ

1− φ

)

z + log(1− φ)

)

• this is an exponential family distribution with

θ = log
φ

1− φ
, A(θ) = log(1 + eθ)

• note that θ is a logit function of φ
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Bernoulli distribution

• since we know that E[z] = φ, gives that

E[z] = φ =
1

1 + exp(−θ)

since the logit function is an inverse sigmoid function

• could also derive the mapping between E[z] and θ via

d

dθ
A(θ) =

eθ

1 + eθ

=
1

1 + exp(−θ)
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Generalized linear models

assumptions

1 y |x ∼ E(θ), where E is an exponential family distribution

2 given x, goal is to predict f̂(x) = E[y |x]

3 θ = wTx
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Canonical response function

• to obtain prediction f̂(x) from input x, go through the chain

f̂(x) = E[y |x] (assumption 2)
= g(θ) (for some g)
= g(wTx) (assumption 3)

• the mapping g : θ 7→ E[y |x] is known as the canonical response
function and is given by

g(θ) =
d

dθ
A(θ)

• inverse of g is known as the canonical link function

• often E[y |x] is simply the usual parameter of the distribution (e.g., φ
for Bernoulli(φ)), so no need to differentiate A
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Logistic regression as a GLM

• choose exponential family distribution E(θ) as Bernoulli(φ), so

θ = log
φ

1− φ
, A(θ) = log(1 + eθ)

• prediction rule given by

f̂(x) = E[y |x;w] (assumption 2)
= φ (expected value of Bernoulli(φ))
= 1/(1 + exp(−θ)) (assumption 1 & θ from above)
= g(θ) (definition of sigmoid)
= g(wTx) (assumption 3)
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Exponential families

• to express some other distributions, like Gaussians, as exponential family
distributions, need slightly more general definition

p(y; θ) = h(y) exp(θy −A(θ))

• all the main properties remain
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Gaussian distribution with fixed variance

• choose σ2 = 1 (for linear regression, σ2 doesn’t matter)

• then follows that

p(z;µ) = (1/
√
2π) exp(−(z − µ)2/2)

= (1/
√
2π) exp(−z2/2) · exp(µz − µ2/2)

• this is an exponential family distribution with

h(z) = (1/
√
2π) exp(−z2/2), θ = µ, A(θ) = θ2/2
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Linear regression as a GLM

• let y |x ∼ N(µ, 1), so

h(z) = (1/
√
2π) exp(−z2/2), θ = µ, A(θ) = θ2/2

• prediction rule given by

f̂(x) = E[y |x;w] (assumption 2)
= µ (expected value of Gaussian)
= θ (assumption 1 & θ from above)
= wTx (assumption 3)
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Exponential families

• the most general definition we will use is

p(y; θ) = h(y) exp(θTϕ(y)−A(θ))

– θ = (θ1, . . . , θK) is now a vector of natural parameters
– ϕ(y) = (ϕ1(y), . . . , ϕK(y)) is a vector of sufficient statistics

• previous properties carry over, with adjustments, e.g.,

∇A(θ) = E[ϕ(y)]

• GLMs are as before, but f̂(x) = E[ϕ(y) |x]
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Sufficient statistics

• a statistic is a function of a random variable

• informally, sufficiency characterizes what is essential in a dataset: if
X ∼ F (θ), then the statistic T is sufficient for θ if there is no
information in X about θ beyond what is in T (X)

• given density p(x; θ), the statistic T is sufficient for θ if and only if there
are functions f, g ≥ 0 such that

p(x; θ) = f(x)g(T (x), θ)

(known as Neyman-Fisher factorization theorem)

• maximum likelihood estimate of θ only depends on T (X)

• application: large-scale streaming data
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Sufficient statistics and exponential families

sufficiency is a more general concept than the exponential family, but is also
closely connected

(a) can obtain sufficient statistics by inspection (ϕ is sufficient for θ)

(b) only* distributions having sufficient statistics with dimension bounded as
sample size increases (Pitman-Koopman-Darmois thm.)

given i.i.d. random variables X = (X1, . . . , XN ) with the same
exponential family density, joint density given by

p(x; θ) =

(

N
∏

i=1

h(xi)

)

exp

(

θT
N
∑

i=1

ϕ(xi)−NA(θ)

)

so X is also exponential with statistic
∑N

i=1 ϕ(xi)
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Gaussian with unknown variance

• (univariate) Gaussian distribution

p(x;µ, σ2) =
1√
2πσ

exp

(

− (x− µ)2

2σ2

)

can be written in exponential family form, with

h(x) =
1√
2π

, θ =

[

µ/σ2

−1/2σ2

]

, ϕ(x) =

[

x
x2

]

A(θ) =
µ

2σ2
+ log σ = − θ21

4θ2
− 1

2
log(−2θ2)

• similar result for multivariate case with

ϕ(x) =

(

N
∑

i=1

xi,

N
∑

i=1

xix
T
i

)
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Maximum entropy and sufficient statistics

• another motivation for exponential family form

• the entropy of a discrete random variable

H(X) = −
∑

x

p(x) log p(x)

is a measure of the average information content of X

• can be viewed as ‘expected surprisal’ E[− log p(X)]
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Maximum entropy and sufficient statistics

• suppose there are certain features of interest of the data

• consider finding distribution p consistent with some constraints on these
features fi, but want to be agnostic about p otherwise

• the solution to

maximize H(X)
subject to Ep[fi(X)] = αi, i = 1, . . . ,m

with variable p is a distribution in the (exponential family) form

p(x; θ) =
1

Z(θ)
h(x) exp

(

m
∑

i=1

θifi(x)

)

• method of moments: let αi be empirical expectations of fi
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Terminology

• exponential family models

• log-linear models

• maximum entropy models

• Gibbs distribution

• Boltzmann distribution

• energy-based model

• conditional random field
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Multinomial distribution

• want to build classifier that handles more than two outcomes

• use the multinomial distribution, which models the probability of rolling
a k-sided die n times

• mass function given by

p(x1, . . . , xk) =
n!

∏k
i=1 xi!

k
∏

i=1

φxi

i

where xi ∈ {1, . . . , n}

• when k = 2, reduces to binomial distribution
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Categorical distribution

• when n = 1, called a categorical distribution, a generalization of the
Bernoulli distribution with mass

p(x) =

k
∏

i=1

φ
[x=i]
i

so p(x = i) = φi

• often represent outcomes of categorical distributions as ‘one-hot’ vectors
e1, . . . , ek ∈ Rk

• in machine learning areas, ‘multinomial’ is often used to refer to the
categorical distribution

• often OK, but sometimes causes confusion and have to be careful: e.g.,
consider n different categorical variables vs one multinomial variable
with n trials
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Categorical distribution

• can parametrize categorical (or multinomial) distribution either with
φ1, . . . , φk, or φ1, . . . , φk−1, to account for φk = 1−∑i[i 6= k]φi; here,
use the latter

• member of the exponential family with

ϕi(x) = [x = i], θ =







log(φ1/φk)
...

log(φk−1/φk)






, A(θ) = − log(φk)

so ϕ(x) ∈ Rk−1
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Softmax regression

• consider GLM with categorical response

• prediction rule given by

f̂(x) = E[ϕ(y) |x] = φ = g(θ) = g(wTx)

where canonical response function

g(θ)i =
exp(θi)

∑

j exp(θj)
, g : Rk−1 → [0, 1]k−1

is the softmax function
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Geospatial imaging
(Wolfe et al., Harris Corporation)

• classify components of (multispectral or hyperspectral) images

• classification (via softmax regression) of urban environment into 5
classes: asphalt, concrete, grass, tree, building

• data provided by National Ecological Observatory Network (NEON) on
urban test site in Fruita, Colorado

• images from imaging spectrometer; use RGB + near-infrared bands

• combine with height data by using LIDAR on NEON point clouds, along
with reflectance, elevation, texture, shape

• ‘examples’ are attributes of a single pixel
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Insurance claim modeling
(Goldburd, Khare, Tevet)

• GLMs are pervasive in insurance modeling: e.g., predict severity of auto
claims using driver age and marital status

• model: claim severity is gamma distributed; use log link function
(captures premiums being positive, multiplicative behavior like violations
increasing premium by x%)

• if w = (5.8, 0.1,−0.15), then claim severity for 25 year old married
driver is $3,463.38 via

log E[y |x] = 5.8 + 0.1× 25 + (−0.15)× 1 = 8.15

• also useful to interpret as

µ = e5.8 × e0.1(25) × e−0.15(1)

= $330.30× 12.18× 0.86

i.e., ‘base average severity’ of $330.30 with additional factors applied
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Generative classifiers



Generative models

• discriminative models estimate p(y |x) (e.g., logistic regression) or
directly learn a mapping from the input to output space (e.g., SVM)

• alternatively, can model the full joint distribution p(x, y); these are
called generative because they can generate (xi, yi)

• usually, model the joint by modeling p(x | y) and p(y), and positing the
following recipe for how the data was generated:

1 sample yi from p(y)
2 sample xi from p(x | yi)

useful to ‘read’ generative models using this data generation story

• distributions typically chosen to be in the exponential family
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Generative classifiers

• then posterior distribution p(y |x) can be derived by reversing the
generative process via Bayes’ rule

p(y |x) = p(x, y)

p(x)
=

p(x, y)
∫

y
p(x, y)

=
p(x | y)p(y)
∫

y
p(x | y)p(y)

• denominator (normalization constant) can be expressed directly using
class priors p(y) and class-conditional densities p(x | y)

• normalization constant not needed strictly to make predictions

argmax
y

p(y |x) = argmax
y

p(x | y)p(y)
p(x)

= argmax
y

p(x | y)p(y)

• to suppress importance of normalization constant, can write

p(y |x) ∝ p(x | y)p(y)
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Outline

Gaussian discriminant analysis

Naive Bayes classifier

60



Multivariate Gaussian distribution

• if X ∼ N(µ,Σ), with µ ∈ Rn, Σ ≻ 0, density given by

p(x;µ,Σ) =
1

(2π)n/2(detΣ)1/2

(

−1

2
(x− µ)TΣ−1(x− µ)

)

• also have

E[X] =

∫

x

xp(x) dx = µ

var[X] = E[(X − E[X])(X − E[X])T ]

= E[XXT ]− E[X]E[X]T

= Σ
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Gaussian discriminant analysis

• consider binary classification problem

• assume data comes from generative model

y ∼ Bernoulli(φ)
x | y = 0 ∼ N(µ0,Σ)
x | y = 1 ∼ N(µ1,Σ)

i.e., data comes from one of two Gaussians chosen with a φ-coin flip

• when class-conditional densities x | y share the same covariance matrix
Σ, model called linear discriminant analysis

• to obtain other models, use other forms for x | y
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Maximum likelihood estimation

• estimate w = (φ, µk,Σ) by maximizing p(D |w)

ℓ(w) = logL(w)

= log
N
∏

i=1

p(xi, yi;w)

= log

N
∏

i=1

p(xi | yi;w)p(yi;w)

=
N
∑

i=1

log p(xi | yi;w) +
N
∑

i=1

log p(yi;w)

=

N
∑

i=1

log p(xi | yi;µ0, µ1,Σ) +

N
∑

i=1

log p(yi;φ)
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Maximum likelihood estimation

maximum likelihood estimates of parameters given by

φ̂ =
1

N

N
∑

i=1

[yi = 1]

µ̂k =

∑N
i=1[yi = k]xi
∑N

i=1[yi = k]

Σ̂ =
1

N

N
∑

i=1

(xi − µyi
)(xi − µyi

)T

very natural interpretations:

• φ̂ is empirical proportion of positive label in D
• µ̂k is empirical average of xi with label k

• Σ̂ is empirical covariance, with variance measured to relevant mean
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GDA as a linear classifier
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GDA and logistic regression

• consider posterior of positive label as function of x

p(y = 1 |x;w) = 1

1 + exp(−θTx)

where θ is a function of w = (φ, µ0, µ1,Σ)

• i.e., has the same functional form as logistic regression, but logistic
regression makes no Gaussian assumption about x | y

• GDA makes stronger assumptions and is more data efficient
(‘asymptotically efficient’) if the model is accurate

• logistic regression is more robust to model misspecification (e.g., p(y |x)
also logistic if x | y in certain class of exponential families)
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Multiclass Gaussian discriminant analysis

• more generally, consider modeling p(y = k |x) for k ∈ [K] as Gaussians
with equal covariance

• find that log odds ratio between two classes

log
p(y = k |x)
p(y = k′ |x) = wTx

for some w, i.e., linear in x

• get linear decision boundaries, and obtain MLEs of the parameters along
the same lines as before
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Multiclass Gaussian discriminant analysis
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Quadratic discriminant analysis

• consider discriminant analysis where covariances not equal

• then decision boundaries described by quadratic equations

• similar, but not identical to, linear GDA in enlarged quadratic space
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Quadratic discriminant analysis
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Outline

Gaussian discriminant analysis

Naive Bayes classifier
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Classifier for discrete inputs

• binary classification problem where inputs xi are discrete

• example: spam classification

• assume x ∈ {0, 1}|V |, with xj = 1 indicating that feature j is true, e.g.,
example contains some word

• vocabulary V is set of all words being considered

• often take V to be all words observed in training data, minus very
common ‘stopwords’ like ‘the’, ‘and’, etc.
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Vocabulary and feature vector representation

x =
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a
aardvark
aardwolf

...
buy
...

zymurgy
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Classifier for discrete inputs

• consider generative model with

y ∼ Bernoulli(φ)
x | y = 0 ∼ Categorical(θ0)
x | y = 1 ∼ Categorical(θ1)

• note: same as GDA model with categorical distributions

• problem: because here x ∈ {0, 1}|V |, if, e.g., 50K words in vocabulary,
then x | y = k has 250000 − 1 ≈ 3× 1015051 parameters
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Naive Bayes assumption

• idea: to simplify, assume that all the features xj are conditionally
independent of each other given y, implying that

p(x | y) =
n
∏

j=1

p(xj | y)

• gives the model

y ∼ Bernoulli(φ)

xj | y = 0 ∼ Bernoulli(θj0)

xj | y = 1 ∼ Bernoulli(θj1)

which has only 2|V |+ 1 parameters

• xj | y could also be categorical, discretized continuous, etc.
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Bag of words and exchangeability

• especially for text data, naive Bayes (conditional independence)
assumption called a bag of words model

• equivalent to assuming that order of words doesn’t matter

• in statistics, called exchangeability, and exchangeable sequences of
random variables have various useful properties
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Maximum likelihood estimation

maximum likelihood estimation as in GDA, giving

φ̂ =
1

N

N
∑

i=1

[yi = 1]

θ̂jk =

∑N
i=1[x

j
i = 1, yi = k]

∑N
i=1[yi = k]

very natural interpretations:

• φ̂ is empirical proportion of positive label in D
• θ̂jk is empirical proportion of documents containing j in label k

e.g., θ̂viagraspam = 0.4 means ‘viagra’ appears in 40% of the emails labeled as
spam in the training set
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Labeling new points

to classify new example x, compute

p(y = 1 |x) =
p(x | y = 1)p(y = 1)

p(x)

=
p(x | y = 1)p(y = 1)

p(x | y = 0)p(y = 0) + p(x | y = 1)p(y = 1)

=
p(y = 1)

∏|V |
j=1 p(x

j | y = 1)

p(y = 0)
∏|V |

j=1 p(x
j | y = 0) + p(y = 1)

∏|V |
j=1 p(x | y = 1)
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Smoothed estimators

• problem: p(xj | y) = 0 if xj is not in the training set, so
p(y = k |x) = 0/0

• a general problem with maximum likelihood estimators

• prompted NLP researchers to come up with a range of heuristic
‘smoothed’ estimates

• in general, if estimating parameters of a multinomial with N trials from
d observations z1, . . . , zd, could instead use estimator

θ̂i =
zi + α

N + dα

where α > 0 is a pseudocount

• called Laplace smoothing or additive smoothing
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Multinomial event model

• previous model known as (multivariate) Bernoulli event model:

1 flip a φ-coin to decide whether document is spam/not

2 for each j ∈ V , flip θjk-coin to include word or not

• could also consider multinomial event model, in which each xj is
categorical over the vocabulary

• still a bag of words model, but very different interpretation

– multinomial accounts for multiple occurrences of words

– Bernoulli may overweight single occurrences in long documents

– Bernoulli accounts for non-occurrence of words

• multinomial models generation of words while Bernoulli models
generation of documents
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Maximum likelihood estimation

maximum likelihood estimation very similar to before, except

φ̂ =
1

N

N
∑

i=1

[yi = 1]

θ̂lk =

∑N
i=1

∑Ni

j=1[x
j
i = l, yi = k]

∑N
i=1[yi = k]Ni

where Ni is number of words in document i

• φ̂ is empirical proportion of positive label in D (as before)

• θ̂lk is empirical proportion of word l in label k

e.g., θ̂viagraspam = 0.4 means ‘viagra’ is 40% of the words across all spam emails
in the training set
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Support vector machines



Outline

Support vector machines

Duality

Kernelization
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Binary classification

• dataset D = {(x1, y1), . . . , (xN , yN )}

• consider labels yi ∈ {−1, 1} instead of {0, 1}

• parameters w ∈ Rn, b ∈ R (intercept)

• consider directly fitting w, b to give a linear decision boundary

wTx+ b = 0

so f̂(x) = sign(wTx+ b)

• assume for now D is linearly separable
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Separating hyperplanes

85



Choosing a separating hyperplane

• since there are multiple separating hyperplanes, need to choose

• there is some distance between the hyperplane and the closest point on
either side

• first, observe that parameters (w, b) of hyperplane wTx+ b = 0 can be
rescaled to (αw,αb), so should choose scaling

• normalize (w, b) so anything with wTx+ b ≥ 1 is label 1 and points with
wTx+ b ≤ −1 is label −1
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Separating hyperplanes
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Geometry of parallel hyperplanes

PSfrag replacements
a x1 = (b1/‖a‖2)a

x2 = (b2/‖a‖2)a

aTx = b2

aTx = b1

distance between hyperplanes is ‖x1 − x2‖2 = |b1 − b2|/‖a‖2
88



Geometry of parallel hyperplanes

• previous diagram shows that distance is given by 2/‖w‖2

• could also see this via the following:

– let xneg be arbitrary negative example on wTx+ b = −1

– let xpos be the projection of xneg onto wTx+ b = 1

– xpos = xneg + λw for some λ, and λ‖w‖2 is distance between lines

– solve for λ with three equations above, giving λ = 2/‖w‖22

• criterion: choose w, b to push these lines as far apart as possible

• minimal distance of point to hyperplane is called margin, so this
criterion typically called maximum margin classification
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Max-margin classifier

• maximize distance 2/‖w‖2 between hyperplanes, subject to constraints
that hyperplanes correctly classify points in D

• transform maximization of 2/‖w‖2 to minimization of ‖w‖22/2

• gives the convex QP

minimize (1/2)‖w‖22
subject to yi(w

Txi + b) ≥ 1, i = 1, . . . , N

where constraints say margin ui = yi(w
Txi + b) is positive, i.e., example

(xi, yi) classified correctly

90



Max-margin classifier
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Nonseparable data
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Influence of outliers
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Soft margin

• for nonseparable data, previous problem is infeasible

• soft margin: allow some examples to have negative margin

• roughly, replace ui ≥ 0 with ui ≥ −ti, ti ≥ 0, and then encourage most
ti to be small or zero

• gives SVM problem

minimize (1/2)‖w‖22 + λ1T t
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0

where λ > 0 is a trade-off parameter

• can view as scalarization of multicriterion objective (‖w‖22, ‖t‖1)
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Slack variables

• ti = 0: xi is on the correct side of the margin

• ti > 0: xi is on the wrong side of the margin (violated margin)

• ti > 1: xi is on the wrong side of the hyperplane
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Soft margin and outliers
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Observations

• a non-probabilistic method

• max-margin hyperplane only depends on points on the boundary or on
wrong side of margin (called support vectors)

• the slack variable t will generally be sparse

• model parameter λ > 0 controls size of margin
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Choosing λ
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Outline

Support vector machines

Duality

Kernelization
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Duality

• duality in mathematics is a principle or theme, not a theorem

• shows up in many forms, and is pervasive in math and physics

• fundamental idea: two different perspectives on the same object

• i.e., can associate with a given mathematical object a related ‘dual’
object that helps one understand the properties of the original object
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Duality

• if the dual of an object X is denoted X∗, duality often satisfies two key
properties:

(a) involution: X∗∗ = X

(b) order-reversing: if X ≤ Y , then Y ∗ ≤ X∗ (for some ≤)

• often an additional property as well

(c) ‘regularity’: a duality construction for a ‘nice’ subset X nice ⊆ X has
X∗ ∈ X nice for X ∈ X , with X∗∗ being the ‘closest’ nice approximation
to X in some sense (often some kind of closure)
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Set complement

if A ⊆ X, let Ac be the complement of the set A in X

(a) (Ac)c = A

(b) if A ⊆ B ⊆ X, then Bc ⊆ Ac

can say that intersection and union are ‘dual operations’ on sets due to de
Morgan’s laws

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc
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Orthogonal complement

if L ⊆ V is a subspace of a (finite dimensional) vector space V , recall that

L⊥ = {x ∈ V | xT z = 0 for all z ∈ L}

(a) (L⊥)⊥ = L

(b) if dimL ≤ dimM then dimM⊥ ≤ dimL⊥

(b) if L ⊆ M then M⊥ ⊆ L⊥

(c) if S ⊆ V is a set, then S⊥ is a subspace, and (S⊥)⊥ = spanS

orthogonal decomposition: for x ∈ V and subspace L,

x = ΠL(x) + ΠL⊥(x)
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Negation

let x ∈ R

(a) −(−x) = x

(b) if x ≤ y then −y ≤ −x

this is an order-reversing involution, but too dull to be called duality: it
doesn’t really give two different perspectives on anything
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Duality in linear algebra

• idea: shift perspective between points (vectors) and linear functions

• more interesting than orthogonal complement example, because the
duality involves shifting between two types of objects
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Duality in linear algebra

• given vector space V , the dual space of V is defined as

V ∗ = {f : V → R | f linear}

elements f ∈ V ∗ called linear functionals on V

• a vector space under the operations

(f + g)(x) = f(x) + g(x)

(αf)(x) = α(f(x))

• each z ∈ Rn has an associated fz ∈ (Rn)∗ given by fz(x) = zTx

• every f ∈ (Rn)∗ has this form (Riesz representation theorem)

• i.e., (Rn)∗ consists of row vectors, interpreted as functions
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Duality in linear algebra

• Rn and (Rn)∗ are isomorphic (Rn is self-dual), so the duality machinery
appears somewhat useless in finite dimensions

• however, still have very different interpretations

• in particular, will visualize linear functionals not as points in dual space
but as hyperplanes in primal space, and vice versa

hyperplanes H in V ⇐⇒ linear functionals f : V → R in V ∗

• hyperplanes and transposes are pervasive in dual constructions in
optimization for this reason

• gives intuitive interpretations of other dual constructions
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Dual norm

• given a general norm ‖ · ‖ on Rn, its dual norm is

‖z‖∗ = sup{zTx | ‖x‖ ≤ 1}

– dual of ‖ · ‖2 is ‖ · ‖2 (Euclidean norm is ‘self-dual’)

– ‖ · ‖1 and ‖ · ‖∞ are duals of each other

• interpret ‖ · ‖∗ as a norm on (Rn)∗, i.e., a norm on functions

• ‖z‖∗ is the amount the function zT lengthens vectors x, over vectors x
in the unit ball

• i.e., the operator norm of zT , a standard norm for functions
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Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {z | zTx ≥ 0 for all x ∈ K}

• K = Rn
+: K

∗ = Rn
+

• K = Sn
+: K

∗ = Sn
+

• K = {(x, t) | ‖x‖2 ≤ t}: K∗ = {(x, t) | ‖x‖2 ≤ t}
• K = {(x, t) | ‖x‖1 ≤ t}: K∗ = {(x, t) | ‖x‖∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

z �K∗ 0 ⇐⇒ zTx ≥ 0 for all x �K 0

i.e., K∗ is linear functionals positive (as functions) on K
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Duality in convex optimization

• as in linear algebra, duality in convex analysis also involves shifting
perspective between points and hyperplanes (or linear functionals)

• get dual constructions for sets, functions, and optimization problems
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Duality for convex sets

a closed convex set C is the intersection of the closed halfspaces containing it
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Duality for convex functions

• apply convex duality principle for sets to epi f

• a closed proper convex function is the pointwise supremum of its affine
underestimators

• translating this geometric idea to the language of functions gives the
definition of the conjugate function f∗
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The conjugate function

the conjugate of a function f is

f∗(z) = sup
x∈dom f

(zTx− f(x))

PSfrag replacements

f(x)

(0,−f∗(z))

xz

x

• dom f∗ ⊆ (Rn)∗ is set of slopes z of all possible affine minorizers of f

• f∗(z) is offset from the origin to make that line tangent to f

• −f∗(0) = inf f(x)

113



The conjugate function

(a) f∗∗ = f (if f is closed proper convex)

(b) if f ≤ g then g∗ ≤ f∗

(c) if f is not convex, f∗ is still closed proper convex, and f∗∗ (biconjugate)
is the convex envelope of f (epi f∗∗ = conv epi f)
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Examples

• negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{

−1− log(−y) y < 0
∞ otherwise

• strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn
++

f∗(y) = sup
x
(yTx− (1/2)xTQx)

=
1

2
yTQ−1y
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Examples

• often, various notions of duality turn out to be related

• if L ⊆ R is a vector space, then

(IL)
∗ = IL⊥

• i.e., the dual of the indicator function of a subspace is the indicator
function of the dual of the subspace, for some notion of dual

• here, f∗∗ = f corresponds to (L⊥)⊥ = L

• can help extend intuition for, e.g., geometry of orthogonal complement
to convex conjugates
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Lagrangian

standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p⋆

Lagrangian: L : Rn × Rm × Rp → R, with domL = D × Rm × Rp,

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

Lagrange dual function: g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(

f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

g is concave, can be −∞ for some λ, ν

lower bound property: if λ � 0, then g(λ, ν) ≤ p⋆

proof: if x̃ is feasible and λ � 0, then

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x̃ gives p⋆ ≥ g(λ, ν)
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Least norm solution of linear equations

minimize xTx
subject to Ax = b

dual function

• Lagrangian is L(x, ν) = xTx+ νT (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x, ν) = 2x+AT ν = 0 =⇒ x = −(1/2)AT ν

• plug in in L to obtain g:

g(ν) = L((−1/2)AT ν, ν) = −1

4
νTAAT ν − bT ν

a concave function of ν

lower bound property: p⋆ ≥ −(1/4)νTAAT ν − bT ν for all ν
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Standard form LP

minimize cTx
subject to Ax = b, x � 0

dual function

• Lagrangian is

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx

= −bT ν + (c+AT ν − λ)Tx

• L is affine in x, hence

g(λ, ν) = inf
x

L(x, λ, ν) =

{

−bT ν AT ν − λ+ c = 0
−∞ otherwise

g is linear on affine domain {(λ, ν) | AT ν − λ+ c = 0}, hence concave

lower bound property: p⋆ ≥ −bT ν if AT ν + c � 0
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Equality constrained norm minimization

minimize ‖x‖
subject to Ax = b

dual function

g(ν) = inf
x
(‖x‖ − νTAx+ bT ν) =

{

bT ν ‖AT ν‖∗ ≤ 1
−∞ otherwise

where ‖v‖∗ = sup‖u‖≤1 u
T v is dual norm of ‖ · ‖

proof: follows from infx(‖x‖ − yTx) = 0 if ‖y‖∗ ≤ 1, −∞ otherwise

• if ‖y‖∗ ≤ 1, then ‖x‖ − yTx ≥ 0 for all x, with equality if x = 0

• if ‖y‖∗ > 1, choose x = tu where ‖u‖ ≤ 1, uT y = ‖y‖∗ > 1:

‖x‖ − yTx = t(‖u‖ − ‖y‖∗) → −∞ as t → ∞
lower bound property: p⋆ ≥ bT ν if ‖AT ν‖∗ ≤ 1
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Lagrange dual and conjugate function

minimize f0(x)
subject to Ax � b, Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(

f0(x) + (ATλ+ CT ν)Tx− bTλ− dT ν
)

= −f∗
0 (−ATλ− CT ν)− bTλ− dT ν

• recall definition of conjugate f∗(y) = supx∈dom f (y
Tx− f(x))

• simplifies derivation of dual if conjugate of f0 is known

example: entropy maximization

f0(x) =

n
∑

i=1

xi log xi, f∗
0 (y) =

n
∑

i=1

eyi−1
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The dual problem

Lagrange dual problem

maximize g(λ, ν)
subject to λ � 0

• finds best lower bound on p⋆, obtained from Lagrange dual function

• a convex optimization problem; optimal value denoted d⋆

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit

example: standard form LP and its dual

minimize cTx
subject to Ax = b

x � 0

maximize −bT ν
subject to AT ν + c � 0
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Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• can be used to find nontrivial lower bounds for difficult problems

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace intD with relintD (interior relative
to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

• there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax � b

dual function

g(λ) = inf
x

(

(c+ATλ)Tx− bTλ
)

=

{

−bTλ ATλ+ c = 0
−∞ otherwise

dual problem
maximize −bTλ
subject to ATλ+ c = 0, λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ except when primal and dual are infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax � b

dual function

g(λ) = inf
x

(

xTPx+ λT (Ax− b)
)

= −1

4
λTAP−1ATλ− bTλ

dual problem

maximize −(1/4)λTAP−1ATλ− bTλ
subject to λ � 0

• from Slater’s condition: p⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p⋆ = d⋆ always
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Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t+ λu), where G = {(f1(x), f0(x)) | x ∈ D}

PSfrag replacements
G

f1(x) p⋆

g(λ)
λu+ t = g(λ)

t

u

PSfrag replacements

G

p⋆

d⋆

t

u

• λu+ t = g(λ) is (non-vertical) supporting hyperplane to G
• hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

PSfrag replacements A

f1(x)

p⋆

g(λ)

λu+ t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, so has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical



Interpretations

• saddle point interpretation

• game interpretation

• price or tax interpretation
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆i hi(x
⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . ,m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1 primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p

2 dual constraints: λ � 0

3 complementary slackness: λifi(x) = 0, i = 1, . . . ,m

4 stationarity: gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

if strong duality holds and x, λ, ν are optimal, then they must satisfy the
KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied: x is optimal if and only if there exist λ, ν
that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes ∇f0(x) = 0 condition for unconstrained problem
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Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice versa

• transform objective or constraint functions
e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

minimize f0(Ax+ b)

• dual function is constant: g = infx L(x) = infx f0(Ax+ b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize f0(y)
subject to Ax+ b− y = 0

maximize bT ν − f∗
0 (ν)

subject to AT ν = 0

dual function follows from

g(ν) = inf
x,y

(f0(y)− νT y + νTAx+ bT ν)

=

{

−f∗
0 (ν) + bT ν AT ν = 0

−∞ otherwise
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Introducing new variables and equality constraints

norm approximation problem: minimize ‖Ax− b‖

minimize ‖y‖
subject to y = Ax− b

can look up conjugate of ‖ · ‖, or derive dual directly

g(ν) = inf
x,y

(‖y‖+ νT y − νTAx+ bT ν)

=

{

bT ν + infy(‖y‖+ νT y) AT ν = 0
−∞ otherwise

=

{

bT ν AT ν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

dual of norm approximation problem

maximize bT ν
subject to AT ν = 0, ‖ν‖∗ ≤ 1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize cTx
subject to Ax = b

−1 � x � 1

maximize −bT ν − 1Tλ1 − 1Tλ2

subject to c+AT ν + λ1 − λ2 = 0
λ1 � 0, λ2 � 0

reformulation with box constraints made implicit

minimize f0(x) =

{

cTx −1 � x � 1

∞ otherwise
subject to Ax = b

dual function

g(ν) = inf
−1�x�1

(cTx+ νT (Ax− b))

= −bT ν − ‖AT ν + c‖1

dual problem: maximize −bT ν − ‖AT ν + c‖1
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Outline

Support vector machines

Duality

Kernelization
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Nonlinear decision boundaries

• initial idea to extend SVM to nonlinear case: replace x with ϕ(x)

• this is fine, but mathematical structure of SVMs allows for kernelization,
a more efficient approach to this

• two main ways to see this

1 duality

2 representer theorem

• representer theorem is more general, but uses machinery of reproducing
kernel Hilbert spaces
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Primal SVM

• recall the SVM problem for linearly separable datasets

minimize (1/2)‖w‖22
subject to yi(w

Txi + b) ≥ 1, i = 1, . . . , N

with variables w, b

• Lagrangian is

L(w, b, α) = (1/2)‖w‖22 +
N
∑

i=1

αi(1− yi(w
Txi + b))

with dual variable α ∈ RN
+
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Dual SVM

• stationarity condition w.r.t. w gives

∇wL(w, b, α) = w −
N
∑

i=1

αiyixi = 0

so w =
∑N

i=1 αiyixi

• plugging into L and simplifying gives

L(w, b, α) = 1Tα− 1

2

N
∑

i,j=1

yiyjαiαjx
T
i xj − bαT y

• stationarity condition w.r.t. b gives

∂

∂b
L(w, b, α) =

N
∑

i=1

αiyi = αT y = 0

so last term in L above is zero
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Dual SVM

• gives dual problem

maximize 1Tα− (1/2)
∑N

i,j=1 yiyjαiαjx
T
i xj

subject to αT y = 0
α � 0

with variable α ∈ RN

• can reconstruct primal parameters from dual solution α⋆ via

w⋆ =

N
∑

i=1

α⋆
i yixi

(expression for b⋆ also available)
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Dual form of decision rule

• primal form of decision rule is wTx+ b

• dual form given by

wTx+ b =

(

N
∑

i=1

αiyixi

)T

x+ b

=
N
∑

i=1

αiyix
T
i x+ b

i.e., only requires computing inner products between query point xnew

and points xi in the training set

• since α is sparse (nonzero only for support vectors), this is even more
efficient to compute
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Nonseparable case

• for the nonseparable case, get the dual

maximize 1Tα− (1/2)
∑N

i,j=1 yiyjαiαjx
T
i xj

subject to αT y = 0
0 � α � λ1

i.e., only nonnegativity constraint on dual variable changes

• primal parameter w has the form as before

• KKT conditions also imply the following about the margin

αi = 0 =⇒ ui ≥ 1

αi = λ =⇒ ui ≤ 1

αi ∈ (0, λ) =⇒ ui = 1
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The kernel trick

• observation: to use a feature map ϕ, only need to compute inner
products ϕ(x)Tϕ(z)

• define the kernel K corresponding to ϕ as

K(x, z) = ϕ(x)Tϕ(z)

• key idea: K may be much easier to evaluate than ϕ, so can implicitly

learn in high-dimensional feature space implied by ϕ without computing
it directly

• intuitively, kernel functions measure similarity between x and z
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Quadratic kernel

• if x, z ∈ Rn, then K(x, z) = (xT z)2 is the kernel for

ϕ(x) =
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(shown for n = 3)

• computing ϕ(x) requires O(n2) while evaluating K is O(n)

• more generally, evaluating K(x, z) = (xT z + c)d is O(n) but implicitly
works in O(nd) dimensional space

146



Mercer’s theorem

• what functions of x, z correspond to valid kernels?

• can explicitly construct ϕ, but this is sometimes awkward

• alternate characterization: the map K : Rn ×Rn → R is a valid kernel if
and only if K̃ ∈ Sn

+, where the kernel matrix K̃ for a set of points

z1, . . . , zN is given by K̃ij = K(zi, zj)
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Examples of kernels

• quadratic kernel: K(x, z) = (xT z)2

• polynomial kernel: K(x, z) = (xT z + c)d

• Gaussian kernel (with parameter σ > 0):

K(x, z) = exp

(

−‖x− z‖22
2σ2

)

• string and sequence kernels

• custom, domain-specific kernels (e.g., bioinformatics)
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Kernelized support vector machine

149



Splice site recognition
(Ben-Hur et al., PLoS Computational Biology, 2008)
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Splice site recognition
(Ben-Hur et al., PLoS Computational Biology, 2008)

• a computational gene finding task: find splice sites marking boundaries
between exons and introns in eukaryotes

• vast majority of splice sites characterized by presence of specific dimers

on intronic side of splice site (GT for donor/5’ and AG for acceptor/3’)

• however, only 0.1%-1% of GT/AG occurrences in genome represent true
splice sites

• goal: find acceptor sites in DNA sequences (C. elegans dataset)
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Splice site recognition
(Ben-Hur et al., PLoS Computational Biology, 2008)

• first consider just using two (real-valued) features: GC content before
and after candidate acceptor splice site

• GC content of a DNA sequence is percentage of nucleotides that are G
or C (nucleotides are either G, C, A, or T)

• can consider linear, polynomial, and Gaussian kernels
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Polynomial kernel (increasing d)
(Ben-Hur et al., PLoS Computational Biology, 2008)
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Gaussian kernel (decreasing σ)
(Ben-Hur et al., PLoS Computational Biology, 2008)
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Gaussian kernel

• f̂ is sum of Gaussian ‘bumps’ around each support vector

• to interpret f̂ , compare relative size of ‖x− z‖22 and σ2

• as σ decreases, behavior of kernel becomes more local, leading to greater
curvature of decision surface (and potential overfitting)

155



Spectrum kernel
(Leslie et al., Biocomputing, 2001)

• spectrum kernel: ϕ(x) is all k-mers (called k-spectrum), so sequences
are similar if they contain many of the same k-mers

– ϕ maps sequence x over alphabet A into |A|k-dimensional space

– each dimension is # occurrences of k-mer s in x

• using a suffix tree, can evaluate spectrum kernel in time linear in the
sequence length rather than exponential |A|k time

• can classify a test sequence xnew in linear time

– store hash table mapping k-mers to contributions to w

– move k-sliding window across xnew, look up k-mers in hash, increment
classifier value f̂(x) by associated coefficient

• many extensions: weights, add positional/evolutionary information, ...
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SVMs and kernel methods

• SVMs are essentially simple linear classifiers, but derive their full power
via an elegant extension to the nonlinear setting that implicitly works in
high or infinite dimensional feature spaces

• kernels provide an intuitive and flexible modeling toolbox that can be
adapted to many different problems, including problems with complex,
structured data (strings, sequences, trees, graphs, ...)
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