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Data analysis

two goals in analyzing data

• prediction: predict responses given future input variables

• information: extract information about how nature associates
outputs to inputs
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Data modeling and algorithmic modeling

• data modeling

– assume y = f(x, parameters, noise) and we know f

– estimate parameters, then use for prediction and information

– validate with goodness-of-fit tests and residual examination

• algorithmic modeling

– assume nothing about how y is produced from x

– use learning procedure to build prediction rule

– validate with prediction accuracy
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Data modeling and algorithmic modeling

• Breiman’s culture breakdown for statisticians in 2001: 98%/2%

• updated estimate (McAuliffe): 50%/50%

• culture dynamic accelerating towards algorithmic modeling

• quantitative finance culture breakdown ≈ statistics c. 2001
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Data modeling vs algorithmic modeling

• machine learning (algorithmic modeling) focuses on accuracy of
future predictions

• classical quant finance methods (data modeling) typically focus on

– goodness of fit based on in-sample residuals (r2)

– significance of, e.g., regression coefficients (p-values)

– interpretability

• these metrics do not directly relate to predictive accuracy
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Statistical decision theory

• given random inputs x and outputs y associated by p(x, y)

• call map f : x 7→ ŷ a ‘decision rule’

• accuracy of decision rule measured with loss function

– 0-1 loss: L01(y, ŷ) = [y 6= ŷ]

– squared error loss: L2(y, ŷ) = ‖y − ŷ‖22
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Statistical decision theory

• risk is a function of the rule f , and is the expected loss of the rule

R(f) = E[L(y, f(x))]

where expectation is over (x, y) ∼ p(x, y)

– 0-1 loss gives ‘probability of error’ risk P(f(x) 6= y)

– squared error loss gives ‘mean squared error’ risk E[‖f(x)− y‖22]

• optimal decision rule f⋆ obtained by choosing decision rule to
minimize desired risk function
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Statistical learning theory

• in statistical learning theory, the setup is that we do not know
p(x, y); only have a collection of training examples D = {(xi, yi)}
from unknown p(x, y)

• now cannot compute risk or obtain f⋆

• two options

(A) use D to estimate p(x, y), then derive optimal rule from there (hard)

(B) use D to directly estimate a decision rule (do this)
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Empirical risk minimization

• we want to find f⋆ minimizing risk function R

• idea: approximate R (an expectation) with empirical average

R̂(f) =
1

N

N∑

i=1

L(f(xi), yi)

called empirical risk, i.e., average loss over training set

• empirical risk minimization (ERM): given collection of possible
decision rules F , select

f̂ = argmin
f∈F

R̂(f)

12



Error decomposition

• given

– F : class of decision rules being used for modeling

– f̂ : minimizer of empirical risk R̂ in F

– f⋆

F : minimizer of true risk R in F

– f⋆: minimizer of true risk R, not constrained to F

• can decompose excess risk of estimate f̂ as

R(f̂)−R(f⋆)
︸ ︷︷ ︸

excess risk

= (R(f̂)−R(f⋆
F ))

︸ ︷︷ ︸

estimation error

+ (R(f⋆
F )−R(f⋆))

︸ ︷︷ ︸

approximation error

– approximation error (‘bias’): cost of using model class F

– estimation error (‘variance’): cost of using empirical risk on D

– (note: also ‘optimization error’, since may be hard to find f̂)
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Error decomposition

• previous decomposition useful for qualitative understanding of
sources of error in choosing particular model, and possible remedies

• increasing F (i.e., use more complex model) reduces bias

• restricting F increases bias, but helps reduce variance

• increasing amount of data (e.g., to infinite dataset) reduces variance

• could consider models that increase bias if they sufficiently reduce
variance (will come back to this)
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Bias-variance decomposition

• let’s look at this in some detail for squared error loss to make this
more concrete and motivate the bias/variance terminology

• making this concrete is tricky, because it requires being very careful
about which quantities are known/unknown, fixed/random

• people go through this setup differently and use slightly different
terminology, but the end result is the same
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Bias-variance decomposition

• suppose we have a training set D = {(xi, Yi)} generated from

Y ∼ N(wT
0 x, σ

2)

– w0 is ‘true parameter’, fixed but unknown

– σ2 is fixed but unknown

– xi are fixed and known

– Yi are random (according to model above)

• because Yi are random, D is random

• could also set up as Y = f(x) + ǫ where E[ǫ] = 0, var[ǫ] = σ2, or
also consider x random, or ...; main story is the same
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Bias-variance decomposition

• we now compute the MLE ŵ (equivalently, f̂ , ...)

• ŵ is a random variable because D is random

• question: how close is ŵ to w0?

• different ways one might think about this

• idea: want to estimate out of sample error, so measure error
between prediction and random new point drawn according to data
distribution

• i.e., there are two sources of randomness
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Bias-variance decomposition

• question: how close is ŵ to w0?

• evaluate by MSE between expected prediction and response

MSE = ED[(ŵ
Txnew − wT

0 x
new)2]

for possible new input xnew

• here, everything is fixed except ŵ

• MSE decomposes (writing x instead of xnew)

MSE = E[(ŵTx)2]− 2E[ŵTx](wT
0 x) + (wT

0 x)
2

= E[(ŵTx)2]− 2E[ŵTx](wT
0 x) + (wT

0 x)
2 + E[ŵTx]2 − E[ŵTx]2

=
(
E[(ŵTx)2]− E[ŵTx]2

)
+
(
E[ŵTx]− wT

0 x
)2
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Bias-variance decomposition

• this is exactly the bias-variance decomposition

MSE =
(
E[(ŵTx)2]− E[ŵTx]2

)

︸ ︷︷ ︸

variance

+
(
E[ŵTx]− wT

0 x
)2

︸ ︷︷ ︸

bias (squared)

• but here, we measured MSE between average prediction and average

output wT
0 x

new

• really, xnew would have an associated ynew, which is centered at
wT

0 x
new but has some variance σ2
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Bias-variance decomposition

• want to see if ŵTxnew ≈ ynew

• sometimes call this the expected prediction error or expected test
error at a given point

EPE = ED

[
EY

[
(ŵTx− Y )2

]]

similar to before, but also averaging over randomness in Y

• via derivation similar to the previous one, get decomposition

EPE = var(Y ) +MSE(ŵTx)

= σ2 + bias(ŵTx)2 + var(ŵTx)

where σ2 is called intrinsic noise or irreducible error

• the average test MSE we would obtain if we repeatedly estimated ŵ
using different D and tested each at xnew
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Bias-variance decomposition

• we want to choose method that gives lowest test MSE

• we can’t compute that, but we do know a few things

1 we can compute the MSE on the training set (training MSE or
training error or empirical risk)

2 test error has two key components (bias and variance), and we
ideally want to make both small

3 easy to be at either extreme (zero bias or variance)
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Training error and test error
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Overfitting and underfitting

• high bias causes algorithm to miss relevant relationships between
inputs and outputs (underfitting)

• high variance causes algorithm to model random noise in the
training set (overfitting)

• model too complex ⇒ small bias, large variance ⇒ overfitting

• model too simple ⇒ large bias, small variance ⇒ underfitting

• goal is to tune model complexity to problem at hand
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Overfitting and underfitting

• training error is not a good estimate of test error

• instead, estimate test error using actual test data set aside
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Model assessment and model selection

• model selection: estimating the performance of different models in
order to choose the (approximate) best one

• model assessment: having chosen a model, estimating its
performance (generalization error) on new, unseen data

25



Model assessment and model selection

• hold-out cross validation: if there’s enough data, randomly divide
D into three parts

(A) training set: used to fit models

(B) validation set: estimate prediction error for model selection

(C) test set: assess generalization error for chosen model

• test set should be used once; otherwise, if model with lowest test
error is chosen, that test error will underestimate the true error

• basic idea: you can’t overfit data you didn’t fit

• (warning: sometimes names of validation/test sets are flipped)
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k-fold cross validation

1 randomly split D into k disjoint subsets Di

2 for each model, for each fold i

1 train model on D −Di

2 compute test error on Di

3 pick model with lowest average test error (estimated generalization
error) across the folds
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Difficulties with cross validation

• choosing the folds

– respect grouping

– respect time (avoid look-ahead bias)

• small datasets

• major issue: assuming future data is similar to training data

– non-stationarity over time (different from overfitting)

– applying to different population than in training set (can lead to
major ethical issues in addition to poor performance)
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Training set bias

Facial detection algorithms made in the U.S. are frequently

trained and evaluated using data sets that contain far more photos of

white faces, and they’re generally tested and quality controlled by

teams of engineers who aren’t likely to have dark skin. As a result,

some of these algorithms are better at identifying lighter skinned

people, which can lead to problems ranging from passport systems

that incorrectly read Asians as having their eyes closed, to HP

webcams and Microsoft Kinect systems that have a harder time

recognizing black faces, to Google Photos and Flickr auto-tagging

African-Americans as apes.

— C. Couch, “Ghosts in the Machine”, October 2017
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Evaluating classifiers

1 pick decision threshold (e.g., 0) based on model output (e.g., wTx)

2 compute relevant evaluation metric for classifier
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Prediction errors

• only four possibilities, so given names

• true positive: y = +1 and ŷ = +1

• true negative: y = −1 and ŷ = −1

• false positive: y = −1 and ŷ = +1

• false negative: y = +1 and ŷ = −1

• false positive also called type I error

• false negative also called type II error

• many other metrics defined as functions of these
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Confusion matrix

TP FN

FP TN
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Error rate

TP FN

FP TN

error rate =
FP+ FN

N

what fraction of all predictions were wrong?
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Accuracy

TP FN

FP TN

accuracy =
TP+ TN

N

what fraction of all predictions were right?
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Precision

TP FN

FP TN

precision =
TP

TP+ FP

of positive predictions, how many were right?
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Recall / Sensitivity / True positive rate

TP FN

FP TN

recall =
TP

TP+ FN

proportion of correctly identified positives
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False positive rate

TP FN

FP TN

FPR =
FP

FP+ TN

proportion of wrongly identified positives (false alarms)

38



Specificity / True negative rate

TP FN

FP TN

specificity =
TN

TN+ FP

proportion of correctly identified negatives
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F1 score

• precision and recall have to be traded off

• easy to make one small at the expense of the other

• can use combined score that is harmonic mean of precision and recall

F1 =
2

1/P + 1/R
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Receiver operating characteristic

• let α be the decision threshold for the classifier

• larger α decreases TPR (bad) and FPR (good)

• smaller α increases TPR (good) and FPR (bad)

• choose α based on how much we care about tradeoff

• by varying α, get range of TPR/FPR and error rate

• standard plot for this called the ‘ROC curve’ (now strange
terminology tracing back to radar systems in WWII)

• another popular metric is AUC, or area under the ROC curve
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Receiver operating characteristic
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Receiver operating characteristic
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Receiver operating characteristic
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Class imbalance

• example of a complicating issue is class imbalance, which occurs
when one class is relatively rare

• classifier may perform well by metrics above but still be totally
useless (e.g., compare to blindly predicting majority class)
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Class imbalance

• collecting more data

• adjusting performance metric

• resample dataset (oversample minority class, undersample majority)

• adjust loss function (e.g., class-weighted SVM)

• formulate problem differently (e.g., outlier detection)
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Debugging learning algorithms

• consider a binary classification problem: spam filtering

• choose set of 100 words as features

• consider using SVM classifier

• suppose test error is 20%, which is too high

• now what?
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Debugging learning algorithms

• common approach is to try wide range of improvements

– try getting more training data
– try fewer features
– try more features
– try different features
– change optimization algorithm
– change model hyperparameter or family (e.g., logistic regression)

• could work, but very time consuming, expensive; relies on luck

• better idea: try to come up with a diagnostic and fixed based on that
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Bias-variance diagnostic

• suspect that the problem is either

1 overfitting (high variance)

2 too few features for model to perform well (high bias)

• suggests diagnostics:

– high variance: test error will be much higher than training error
– high bias: training error will also be high
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Training error and test error
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Bias-variance diagnostic

• pares down what to try

– try getting more training data (fixes high variance)
– try fewer features (fixes high variance)
– try more features (fixes high bias)
– try different features (can fix high bias)
– change optimization algorithm
– change model hyperparameter or family

• coming up with appropriate diagnostics can require creativity
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Regularization



Regularization

• want to explore tradeoff between bias and variance, with the goal of
better out of sample performance

• regularization essentially places constraints on model parameters

• increases bias due to constraints

• decreases variance and encourages simpler models

• simpler models can be more interpretable in addition to potentially
performing better out of sample
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Best subset selection

• fit a separate least squares regression for each of the 2K possible
combination of K features (can extend to other models)

(1) let M0 denote model with no features (predicts sample mean for
each observation)

(2) for k ∈ [K]

(a) fit all models with exactly k predictors

(b) pick best (smallest training MSE) among these, and call it Mk

(3) select best model from M0, . . . ,MK with cross-validation
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Forward stepwise selection

• computationally efficient alternative to best subset selection

(1) let M0 denote model with no features

(2) for k = 0, . . . ,K − 1

(a) fit all K − k models that add exactly one feature

(b) pick best (smallest training MSE) among these, and call it Mk+1

(3) select best model from M0, . . . ,MK with cross-validation
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Shrinkage

• subset selection: fit a model containing a subset of the features

• alternatively, can fit a model with all the features, but constrain (or
regularize) the coefficient estimates

• resulting estimators sometimes called shrinkage estimators since
they ‘shrink’ coefficients towards zero

• two best-known techniques: ridge regression and the lasso
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Ridge regression

• idea: constrain w, i.e.

minimize (1/2)‖Xw − y‖22
subject to ‖w‖22 ≤ r

constrains weights to lie in sphere of radius r

• solution w⋆ to this problem known as ‘ridge estimator’

• in practice, don’t penalize intercept term; also assume that X is
standardized (mean zero, unit variance) and y is centered

57



Ridge regression
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Ridge regression

• has equivalent unconstrained form

minimize (1/2)‖Xw − y‖22 + λ‖w‖22

with tradeoff parameter λ > 0

• this is the usual form used

• called ridge regression, Tikhonov regularization, weight decay, . . .
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Regularization parameter

• λ is chosen via cross-validation

• called a complexity, regularization, or tradeoff parameter

• higher values correspond to simpler models

• as λ → 0, get regular least squares fit

• as λ → ∞, get close to ŵ = 0
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Regularization parameter

• problem can be viewed as scalarization of multicriterion problem

minimize (w.r.t. R2
+) (‖Xw − y‖22, ‖w‖

2
2)

• parameter λ governs the tradeoff

• get a solution ŵ for each value of λ, so the ‘path’ of these ŵ as a
function of λ is called the ‘regularization path’
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Ridge regression and subset selection

• subset selection gives interpretable, parsimonious models, but is
computationally very inefficient

• ridge regression is efficient and can effectively manage bias-variance
tradeoff, but does not simplify models, only carries out ‘weight
decay’ or ‘shrinkage’

• consider marrying aspects of these two approaches

• specifically, consider constraining weights in such a way that many
are likely to be zero, i.e., ŵ will be sparse
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ℓ1 regularization
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Lasso

• problem in form

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

• sparse and convex

• simultaneously carries out feature selection and learning

• unlike ridge regression, no closed form solution, and moreover, the
problem is nonsmooth

• can be used with other loss functions (e.g., logistic)
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Convex envelope interpretation

• convex envelope of (nonconvex) f is the largest convex
underestimator g

• i.e., the best convex lower bound to a function

• ℓ1 is the envelope of card (also called ℓ0) (on unit ℓ∞ ball)

• various characterizations: e.g., f∗∗ or convex hull of epigraph

• (similar in flavor to use of convex surrogates for 0-1 loss)
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Penalty function interpretation

• compared to ridge penalty ‖x‖22, using ℓ1 does two things:

1 higher emphasis on small values to go to exactly zero

2 lower emphasis on avoiding very large values

• thus useful for obtaining sparse or robust solutions to problems

66



Lasso
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Lasso
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Extensions and variations

• there are many variations on the lasso or other uses of ℓ1
regularization, or places where it can be used to interpret what’s
going on

• when there is an ℓ1 (or similar nonsmooth component), should
expect some kind of sparsity
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Sparsity and support vector machines

• recall soft-margin SVM problem

minimize (1/2)‖w‖22 + λ1T t
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0

• when t � 0, have that 1T t = ‖t‖1, so can be rewritten

minimize (1/2)‖w‖22 + λ‖t‖1
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0

• suggests interpretation involving sparsity

• unconstrained form (quadratically regularized hinge loss
minimization) also has this flavor
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Signal reconstruction

minimize (w.r.t. R2
+) (‖x̂− xcor‖2, φ(x̂))

• x ∈ Rn is unknown signal

• xcor = x+ v is (known) corrupted version of x, with additive noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

φquad(x̂) =

n−1∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1∑

i=1

|x̂i+1 − x̂i|
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quadratic smoothing example
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total variation reconstruction example
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quadratic smoothing smooths out noise and sharp transitions in signal
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Total variation denoising
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Total variation denoising
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Total variation denoising
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Group lasso

• problem:
minimize f(x) + λ

∑G

g=1 ‖xg‖2

with x = (x1, . . . , xG)

• like lasso, but require groups of variables to be zero or not

• key is that the ℓ2 norm is not squared

• by choosing groups carefully, can impose sophisticated sparsity
patterns on the solutions (e.g., nonzero variables being contiguous)
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Regularized loss minimization

• general paradigm: regularized loss minimization

minimize l(w) + λr(w)

– loss l measures lack of fit on training data (least squares, negative
log likelihood, hinge loss, . . . ); usually is additive in the training
examples

– regularizer r measures model complexity and can be used to promote
useful or assumed forms of structure (e.g., sparsity); usually does not
depend on the training data

– λ > 0 controls tradeoff and is set with cross validation

• includes all the models discussed so far (and more) as special cases

• l and r may have probabilistic motivations or not

• if both l and r are convex, we can solve these

79



Approaches to machine learning

1 regularized loss minimization (optimization)

2 Bayesian statistics (probability)
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