
Machine Learning for Finance

Neal Parikh

Cornell University

Spring 2018

Optimization algorithms

Optimization algorithms

• many algorithms available for different classes of problems

• distinguish between problem formulation and optimization algorithm

• reformulating the problem may make different algorithms applicable

• specialized vs general-purpose algorithms

• we will only do a high-level survey for flavor, omitting many details

2

Outline

Numerical linear algebra

Basic methods

Optimization in machine learning

3

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A ∈ Rn×n

• for general methods, grows as n3

• less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

• flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

• to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by
keeping only the leading terms

• not an accurate predictor of computation time on modern computers

• useful as a rough estimate of complexity

4

Matrix structure and algorithm complexity

vector-vector operations (x, y ∈ Rn)

• inner product xT y: 2n− 1 flops (or 2n if n is large)

• sum x+ y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

• m(2n− 1) flops (or 2mn if n large)

• 2N if A is sparse with N nonzero elements

• 2p(n+m) if A is given as A = UV T , U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p

• mp(2n− 1) flops (or 2mnp if n large)

• less if A and/or B are sparse

• (1/2)m(m+ 1)(2n− 1) ≈ m2n if m = p and C symmetric

5

Linear equations that are easy to solve

diagonal matrices (aij = 0 if i 6= j): n flops

x = A−1b = (b1/a11, . . . , bn/ann)

lower triangular (aij = 0 if j > i): n2 flops

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

called forward substitution

upper triangular (aij = 0 if j < i): n2 flops via backward substitution

6

Linear equations that are easy to solve

orthogonal matrices: A−1 = AT

• 2n2 flops to compute x = AT b for general A

• less with structure, e.g., if A = I − 2uuT with ‖u‖2 = 1, we can
compute x = AT b = b− 2(uT b)u in 4n flops

permutation matrices:

aij =

{
1 j = πi

0 otherwise

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n)

• interpretation: Ax = (xπ1
, . . . , xπn

)

• satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops

example:

A =

0 1 0
0 0 1
1 0 0

 , A−1 = AT =

0 0 1
1 0 0
0 1 0

7

The factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3):

A = A1A2 · · ·Ak

(Ai diagonal, upper or lower triangular, etc)

• compute x = A−1b = A−1
k · · ·A−1

2 A−1
1 b by solving k ‘easy’

equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves

8

LU factorization

every nonsingular matrix A can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n3 flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n3 flops).
2. Permutation. Solve Pz1 = b (0 flops).
3. Forward substitution. Solve Lz2 = z1 (n2 flops).
4. Backward substitution. Solve Ux = z2 (n2 flops).

cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n

9

Cholesky factorization

every positive definite A can be factored as

A = LLT

with L lower triangular

cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A ∈ Sn

++.

1. Cholesky factorization. Factor A as A = LLT ((1/3)n3 flops).
2. Forward substitution. Solve Lz1 = b (n2 flops).
3. Backward substitution. Solve LTx = z1 (n2 flops).

cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

10

LDLT factorization

every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with
1× 1 or 2× 2 diagonal blocks

cost: (1/3)n3

• cost of solving symmetric sets of linear equations by LDLT

factorization: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n
• for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3

11

Equations with structured sub-blocks

[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1
b2

]
(1)

• variables x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

• if A11 is nonsingular, can eliminate x1: x1 = A−1
11 (b1 −A12x2);

to compute x2, solve

(A22 −A21A
−1
11 A12)x2 = b2 −A21A

−1
11 b1

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A11 nonsingular.
1. Form A−1

11 A12 and A−1
11 b1.

2. Form S = A22 −A21A
−1
11 A12 and b̃ = b2 −A21A

−1
11 b1.

3. Determine x2 by solving Sx2 = b̃.
4. Determine x1 by solving A11x1 = b1 −A12x2.

12

Structured matrix plus low rank term

(A+BC)x = b

• A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

• assume A has structure (Ax = b easy to solve)

first write as [
A B
C −I

] [
x
y

]
=

[
b
0

]

now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b−By

this proves the matrix inversion lemma: if A and A+BC nonsingular,

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

13

Structured matrix plus low rank term

example: A diagonal, B,C dense

• method 1: form D = A+BC, then solve Dx = b

cost: (2/3)n3 + 2pn2

• method 2 (via matrix inversion lemma): solve

(I + CA−1B)y = CA−1b, (2)

then compute x = A−1b−A−1By

total cost is dominated by (2): 2p2n+ (2/3)p3 (i.e., linear in n)

14

Numerical linear algebra software

• most memory usage and computation time in optimization methods
is spent on numerical linear algebra

• don’t implement your own linear algebra

• BLAS

• ATLAS and optimized BLAS

• LAPACK

• vectorization

15

Outline

Numerical linear algebra

Basic methods

Optimization in machine learning

16

Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k)) → p⋆

• can interpret as iterative methods for solving optimality condition

∇f(x⋆) = 0

17

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• other notations: x+ = x+ t∆x, x := x+ t∆x

• ∆x is the step, or search direction; t is the step size, or step length

• (step size also called learning rate in machine learning)

• from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

18

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

• starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

• graphical interpretation: backtrack until t ≤ t0

PSfrag replacements

t

f(x+ t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

19

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• very simple, but can be very slow

20

Gradient descent example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

PSfrag replacements

x(0)

x(1)

x(2)

PSfrag replacements

x(0)

x(1)

backtracking line search exact line search

21

Gradient descent example in R100

f(x) = cTx−

500∑

i=1

log(bi − aTi x)

PSfrag replacements

k

f
(x

(k
)
)
−

p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

‘linear’ convergence, i.e., a straight line on a semilog plot

22

Newton step

∆xnt = −∇2f(x)−1∇f(x)

• x+∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)v

• x+∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

PSfrag replacements

f

f̂

(x, f(x))

(x+∆xnt, f(x+∆xnt))

PSfrag replacements

f ′

f̂ ′

(x, f ′(x))
(x+∆xnt, f

′(x+∆xnt))

0

23

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

• gives an estimate of f(x)− p⋆, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2

• directional derivative in Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)

24

Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.
repeat

1. Compute the Newton step and decrement.

∆xnt := −∇
2f(x)−1

∇f(x); λ2 := ∇f(x)T∇2f(x)−1
∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

25

Examples

example in R2

PSfrag replacements

x(0)

x(1)

PSfrag replacements

k
f
(x

(k
)
)
−

p
⋆

0 1 2 3 4 5
10

−15

10
−10

10
−5

10
0

10
5

• converges in only 5 steps

• quadratic local convergence

26

Examples

example in R100

PSfrag replacements

k

f
(x

(k
)
)
−

p
⋆

exact line search

backtracking

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

PSfrag replacements

k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

27

Examples

example in R10000 (with sparse ai)

f(x) = −
10000∑

i=1

log(1− x2
i)−

100000∑

i=1

log(bi − aTi x)

PSfrag replacements

k

f
(x

(k
)
)
−

p
⋆

0 5 10 15 20

10
−5

10
0

10
5

28

Outline

Numerical linear algebra

Basic methods

Optimization in machine learning

29

Optimization in machine learning

• usually interested in ‘composite objective’ problems of the form

minimize g(x) + h(x)

with

g(x) =

N∑

i=1

gi(x), h(x) =

K∑

k=1

hk(xk)

• try to exploit this (and additional) structure, taking account of

– some or all of N , n, K may be (very) big

– assumptions on g, h (convex? smooth?)

– properties of problem data (storage/access? streaming/changing?)

– generally don’t care about very high accuracy solutions (why?)

• will give a few representative examples (without detailed discussion
of convergence or behavior); these methods have many variations

30

Coordinate descent

• coordinate descent method for minimizing f

xk+1
1 = argmin

x1

f(x1, x
k
2 , x

k
3 , . . . , x

k
n)

xk+1
2 = argmin

x2

f(xk+1
1 , x2, x

k
3 , . . . , x

k
n)

...

xk+1
n = argmin

xn

f(xk+1
1 , xk+1

2 , xk+1
3 , . . . , xn)

• often take xi to be blocks (block coordinate descent)

• for two blocks, called alternating minimization

31

Stochastic gradient descent

• batch gradient descent for additive objective is

xk+1 = xk − α∇f(xk) = xk − α∇
N∑

i=1

fi(x)

• stochastic gradient descent (also called incremental or online)

xk+1 = xk − α∇f(xk) = xk − α∇fi(x)

where i iterates over [N]

– batch: use all N examples each iteration
– stochastic: use 1 example each iteration
– mini-batch: use b examples each iteration

• natural choice for streaming data

32

Proximal gradient method

• given problem of minimizing g + h, proximal gradient method is

xk+1 := proxαkh(x
k − αk∇g(xk))

where

proxλf (v) = argmin
x

(
f(x) +

1

2λ
‖x− v‖22

)

is called the proximal operator of f with parameter λ > 0

• here, g is convex and smooth and h is convex

• proximal operators seem complex, but can be evaluated very
efficiently for many functions that come up in machine learning and
statistics problems, especially nonsmooth ones

33

Soft thresholding

proxλ‖·‖1
(v) = (v − λ)+ − (−v − λ)+ =

vi − λ vi ≥ λ

0 |vi| ≤ λ

vi + λ vi ≤ −λ

34

Accelerated proximal gradient method

• idea: use information from previous time steps

yk+1 := xk + ωk(xk − xk−1)

xk+1 := proxαkh(y
k+1 − αk∇g(yk+1))

where ωk ∈ [0, 1) is an extrapolation parameter that must be chosen
appropriately to achieve the acceleration, e.g., ωk = k/(k + 3)

• stated here for composite case, but acceleration often used in
‘regular’ gradient descent method

• note: accelerated methods are generally not descent methods

35

Sparse logistic regression

36

