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k-means



k-means

given D = {x1, . . . , xN}, xi ∈ Rn, group data into a few ‘clusters’

1 randomly initialize cluster centroids µ1, . . . , µk ∈ Rn

2 repeat until convergence

1 find cluster assignment for xi

ci := argmin
j

‖xi − µj‖
2

2

2 recompute cluster centroids using these assignments

µj :=

∑N

i=1
[ci = j]xi∑N

i=1
[ci = j]
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k-means
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Alternating minimization

• k-means can also be viewed as alternating minimization on the
(biconvex) ‘distortion function’

J(c, µ) =

N∑

i=1

‖xi − µci‖
2
2

• results dependent on initialization, so do random restarts and pick
one with lowest distortion

• can also derive k-means as a limit of a probabilistic model
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Mixture models and

the EM algorithm



Mixture of Gaussians

• probabilistic model for clustering / density estimation

• consider data D = {x1, . . . , xN}

• generative model

z ∼ Multinomial(φ)

x | z = k ∼ N(µk,Σk)

• i.e., each xi generated by sampling a unobserved (hidden, latent)
zi ∈ [K] and then drawing xi from the corresponding Gaussian

• presence of these latent variables is the key new wrinkle

• model parameters are φ, µk, Σk
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Maximum likelihood estimation

• model parameters are φ, µk, Σk

• as usual, write down likelihood for w = (φ, µk,Σk)

ℓ(w) =

N∑

i=1

log p(xi;w)

=

N∑

i=1

log

K∑

zi=1

p(xi | zi)p(zi)

• this function is nonconvex due to sum over values of zi

6



Maximum likelihood estimation

• if zi were known, problem is easy and becomes

ℓ(w) =

N∑

i=1

log p(xi | zi) +

N∑

i=1

log p(zi)

• maximizing with respect to φ, µ, Σ gives

φj =
1

N

N∑

i=1

[zi = j], µj =

∑N

i=1
[zi = j]xi∑N

i=1
[zi = j]

similar expression for Σ

• i.e., if zi were known, nearly identical to maximum likelihood
estimates in GDA (with zi’s as class labels)
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EM algorithm

• idea: iteratively guess the zi and then use formulas above:

1 E-step: compute ρij = p(zi = j |xi; θ, µ,Σ)

2 M-step: use formulas above with ρij in place of [zi = j]

• E-step computes posterior probability of zi’s, given data and current
setting of parameters; ‘soft guesses’ for values of zi

• M-step is maximum likelihood estimation, but there is uncertainty
around the value of the zi and that’s incorporated in estimates

• a ‘soft’ version of k-means in this context
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Gaussian mixture model
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Gaussian mixture model
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EM algorithm

• in general, EM algorithm is standard approach to maximum
likelihood estimation with latent variable models

• data D = {x1, . . . , xN}

• want to fit model p(x, z) with z hidden

• likelihood is given by

ℓ(w) =
N∑

i=1

log p(x;w) =
N∑

i=1

log
∑

z

p(x, z;w)

• often the case that maximum likelihood estimation of x would be
easy if z were known, so alternate the two steps
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EM algorithm

• EM algorithm can be motivated and analyzed in various ways

• iteratively lower bound ℓ, then maximize that lower bound

• for each i, let qi be a distribution over z’s

N∑

i=1

log p(xi) =

N∑

i=1

log
∑

zi

p(xi, zi)

=
N∑

i=1

log
∑

zi

qi(zi)
p(xi, zi)

qi(zi)

≥
N∑

i=1

∑

zi

qi(zi) log
p(xi, zi)

qi(zi)

by Jensen’s inequality
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EM algorithm

• previous formula gives lower bound for any qi; ideally, have the lower
bound be tight (inequality holds with equality) for current value of w

• can show that this is the case when qi(zi) = p(zi |xi;w); it suffices
that qi(zi) ∝ p(xi, zi;w), so

qi(zi) =
p(xi, zi;w)∑
z p(xi, z;w)

=
p(xi, zi;w)

p(xi;w)

= p(zi |xi;w)

• E-step (above): obtain lower bound (has form of an expectation) on
ℓ

• M-step: maximize this lower bound with respect to w
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EM algorithm

• can show that this algorithm converges because it monotonically
improves the log likelihood

• i.e., can show ℓ(wk) < ℓ(wk+1)
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EM algorithm

• EM algorithm can also be viewed as coordinate ascent on

J(q, w) =

N∑

i=1

∑

zi

qi(zi) log
p(xi, zi;w)

qi(zi)

• E-step: maximization with respect to q

• M-step: maximization with respect to w
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Factor analysis

• fitting Gaussian mixture model to data x1, . . . , xN ∈ Rn assumes
enough data (N ≫ n) to discern this structure

• if n ≫ N , cannot even fit a single Gaussian

• here, data points span low-dimensional subspace of Rn, so MLEs of
the parameters result in degenerate Gaussian (singular covariance
matrix) that puts all mass in affine space spanned by the data

• consider models that explicitly handle low rank structure
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Factor analysis

• consider generative model p(x, z) given by

z ∼ N(0, I)

x | z ∼ N(µ+ Λz,Ψ)

where µ ∈ Rn, Λ ∈ Rn×k, Ψ ∈ Rn×n diagonal

• x observed, z latent

• low dimensional structure: k < n, i.e., data is generated by affine
transformation of k-dimensional Gaussian (plus noise)
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Factor analysis

• p(x, z) is Gaussian, and need to find its mean and covariance from
the generative model

• ideally, would want to maximize log (marginal) likelihood of data,
using marginal distribution of x, but this function is hard to optimize

• so, use EM

– E-step: compute qi(zi) = p(zi |xi) (also Gaussian)
– M-step: maximize lower bound

N∑
i=1

∫
zi

qi(zi) log
p(xi, zi)

qi(zi)
dzi

• involves some messy algebra, but can obtain closed form solutions
for all these subproblems (matrix computations)
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Principal components analysis



Dimensionality reduction

• model data x ∈ Rn as approximately lying in some k-dimensional
subspace, with k ≪ n

• has many different use cases

– data compression

– data visualization

– noise reduction

– preprocessing for supervised learning

– feature discovery

– structure discovery
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Principal components analysis

• let D = {x1, . . . , xN}, with xi ∈ Rn, n < N

• rescale data to have mean zero and unit variance

1 replace xi with xi − (1/N)
∑

i
xi

2 replace xj

i with xj

i/σj , where σj = (1/N)
∑

i
(xj

i )
2
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Principal components analysis

• several ways to motivate PCA

• select directions on which to project points to maximize variance

• compute top k eigenvectors of empirical covariance matrix

• pick k-dimensional basis so approximation error of projecting data
onto it is minimized
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Principal components analysis

• given D, find unit vector u such that projection of D onto direction
u has maximum variance

• length of projection of x onto u is xTu, so solve

maximize (1/N)
∑N

i=1
(xT

i u)
2

subject to ‖u‖2 = 1

• objective can be rewritten as quadratic form uTΣu, where

Σ =
1

N

N∑

i=1

xix
T
i

is empirical covariance matrix of (preprocessed) D

• so solution of problem above is computing principal eigenvector of Σ

21



Principal components analysis

• in general, find top k eigenvectors u1, . . . , uk of Σ

• these give an orthonormal basis for Rk

• compute rank k approximation to xi as

yi = (uT
1 xi, . . . , u

T
k xi)

• choice of ui maximizes
∑

i ‖yi‖
2
2
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Topic models

• topic models: methods for automatically organizing, understanding,
searching, and summarizing large electronic archives

– discover hidden themes that pervade the collection

– annotate documents with those themes

– use annotations to organize, summarize, and search texts

• unsupervised generative latent variable models of document structure

• originally introduced by Blei, Ng, and Jordan (2003); much
subsequent work by Blei and collaborators, among many others
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Topic models

• idea: documents composed of multiple topics

• each topic is a distribution over words

• each document is a mixture of corpus-wide topics

• each word is drawn from one of these topics
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Latent Dirichlet allocation

• generative model p(θ, z, w |α, β)

θ ∼ Dirichlet(α)

zn ∼ Multinomial(θ), n = 1, . . . , N

wn ∼ Multinomial(βzn), n = 1, . . . , N

• estimate parameters by, e.g., maximizing log-likelihood

ℓ(α, β) =

D∑

d=1

log p(w |α, β)

where w1, . . . ,wD are documents (training set)

• want to compute posterior of latent variables

• conceptually, use EM (but need approximations here)
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A 100 topic model of Science 1980-2000

sound quantum brain computer ice
speech laser memory data climate
acoustic light human information ocean
language optical visual problem sea
sounds electron cognitive computers temperature

stars research materials fossil volcanic
universe national organic species years
galaxies science molecules evolution fig

astronomers new molecular birds deposits
star funding polymer evolutionary rocks
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Topic proportions in documents
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Variants and applications

• finding similar documents

• measuring scholarly impact (detect influential articles)

• discover evolution of topics over time

• discover correlations between topics

• annotate images with captions

• characterizing political decisions

• organize and browse large document collections
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Model Evolution of Topics over Time
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Visualizing Trends Within Topics
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Model Connections Between Topics

31



Matching Words and Pictures
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Matching Words and Pictures

33


