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Instructions. Do not refer to any outside sources to complete this assignment, in accordance with
the honor code. If you discussed any problems with other students, indicate that in your solutions.

1. Matrix algebra. Let A ∈ R
m×p and let ai ∈ R

m and ãTj ∈ R
p refer to the columns and rows

of A, respectively. Let B ∈ R
p×n and define bi and b̃Tj as its columns and rows, respectively.

In general, vectors x ∈ R
n refer to column vectors, and column vectors can be specified

entrywise in either of the following two ways:

x =











x1
x2
...
xn











, x = (x1, x2, . . . , xn).

In other words, the notation (x1, . . . , xn) specifies a column vector in R
n.

(a) Express the matrix-vector product Ax in terms of the columns of A.

(b) Express the matrix-vector product Ax in terms of the rows of A.

(c) Express the matrix product AB in terms of the rows of A and the columns of B.

(d) Express the matrix product AB in terms of the columns of A and the rows of B.

(e) Least squares. Let A ∈ R
m×n and b ∈ R

m. We will see that

x̂ = argmin
x

‖Ax− b‖22

can be expressed in closed form as

x̂ = (ATA)−1AT b

when the columns of A are linearly independent. Express x̂ in terms of the rows of A.

2. Representing linear functions. For each description of y below, express it as y = Ax for some
A. (You should specify A.)

(a) yi is the difference between xi and the average of x1, . . . , xi−1. (We take y1 = x1.)
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(b) yi is the difference between xi and the average value of all other xj ’s, i.e., the average
of x1, . . . , xi−1, xi+1, . . . , xn.

3. Rank and null space. Let A ∈ R
m×n. Recall that rankA is the (maximal) number of linearly

independent rows or columns of A. We say that A has full rank if rankA = min(m,n), and
that A is rank deficient otherwise.

The null space or kernel of A is defined as

N (A) = {x ∈ R
n | Ax = 0}.

The sum of the rank and dimension of the null space of A equals n, the number of columns.

Let z ∈ R
n. What are the rank and null space of zzT ?

4. Positive definite matrices. Let Sn ⊂ R
n×n be the set of symmetric n× n matrices. A matrix

A ∈ S
n is positive semidefinite, denoted A � 0 or A ∈ S

n
+, if x

TAx ≥ 0 for all nonzero x ∈ R
n.

If xTAx > 0 for all nonzero x, then A is positive definite, denoted A ≻ 0 or A ∈ S
n
++. A

matrix A is negative (semi)definite if −A is positive (semi)definite.

(a) Show that the identity matrix I is positive definite.

(b) Show that zzT , where z ∈ R
n, is positive semidefinite but not positive definite.

(c) Show that if A ∈ S
n is either positive or negative definite, then A is full rank.

(d) Given any matrix B ∈ R
m×n, show that the Gram matrix G = BTB is positive semidef-

inite. In addition, show that if m ≥ n and B is full rank, then G is positive definite.

5. Risk models. Let x ∈ R
n represent a portfolio of assets, with xi representing the amount held

of asset i. In portfolio theory, the risk of a portfolio is typically represented as the quadratic
form xTΣx, where Σ � 0 is called the risk model.

The idea is that if Σij is large, then we expect assets i and j to go up or down together,
while if Σij is negative then we expect assets i and j to move in opposite directions. A well-
diversified portfolio would not place too much in both assets i and j if Σij is positive, since
they are expected to behave similarly.

Give a financial interpretation of Σ not being positive definite.

6. Derivatives and gradients. Suppose f : Rn → R
m and x ∈ int dom f . The function f is

differentiable at x if there exists a matrix Df(x) ∈ R
m×n that satisfies

lim
z∈dom f,z 6=x,z→x

‖f(z)− f(x)−Df(x)(z − x)‖2
‖z − x‖2

= 0, (1)

in which case Df(x) is referred to as the derivative or Jacobian of f at x. (There can be at
most one matrix that satisfies (1).) The function f is differentiable if dom f is open and it
is differentiable at every point in its domain.

Note that Df(x) is a linear map Df(x) : Rn → R
m. The affine function of z ∈ R

n given by

f(x) +Df(x)(z − x)
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is called the first-order approximation of f at x. This function agrees with f at z = x; when
z is close to x, this approximation is very close to f .

The derivative is typically found by computing partial derivatives of f :

Df(x)ij =
∂fi
∂xj

, i = 1, . . . ,m, j = 1, . . . , n.

We will mostly encounter the special case when f is real-valued, i.e., f : Rn → R. In this
case, the derivative Df(x) is a 1 × n matrix, i.e., a row vector. Its transpose is called the
gradient of the function and is denoted

∇f(x) = Df(x)T ,

which is a column vector in R
n with the partial derivatives of f as its components. The

first-order approximation at x ∈ int dom f can be expressed as

f(x) +∇f(x)T (z − x),

an affine function of z.

(a) Quadratic function. Compute the gradient of the function f : Rn → R given by

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ S
n, q ∈ R

n, and r ∈ R.

(b) Chain rule. Let f : Rn → R
m, g : Rm → R

p, and h(x) = g(f(x)). Suppose that f is
differentiable at x ∈ int dom f and g is differentiable at f(x) ∈ int dom g; then h is
differentiable at x, with derivative

Dh(x) = Dg(f(x))Df(x).

Let f : Rn → R, A ∈ R
n×p, b ∈ R

n, and let g(x) = f(Ax+ b). Express ∇g(x) in terms
of A, b, and ∇f(x).

7. Hessians. The second derivative or Hessian matrix of f : Rn → R at x ∈ int dom f , denoted
∇2f(x), is given by

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n,

where the partial derivatives are evaluated at x (and are assumed to exist).

The Hessian can also be expressed as

∇2f(x) = D∇f(x),

where ∇f : Rn → R
n is called the gradient mapping of f , defined by ∇f : x 7→ ∇f(x) when

f is differentiable.
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(a) Quadratic function. Compute the Hessian matrix of

f(x) = (1/2)xTAx+ bTx,

where A ∈ S
n and b ∈ R

n.

(b) Affine composition. Let f : Rn → R, A ∈ R
n×p, b ∈ R

n, and let

g(x) = f(Ax+ b).

Find the Hessian of g.

8. Medical diagnosis. After your yearly checkup, the doctor has good news and bad news. The
bad news is that you tested positive for a serious disease, and that the test is 99% accurate
(i.e., the probability of testing positive given that you have the disease is 0.99, as is the
probability of testing negative given that you don’t have the disease). The good news is that
this is a rare disease, affecting only one in 10,000 people.

What are the chances that you have the disease? Why is it good that the disease is rare?

9. Curse of dimensionality. Consider a dataset D = {(x1, y1), . . . , (xN , yN )}, with xi ∈ R
n and

yi ∈ R. Given a new query point xnew whose (unknown) label we want to predict, the k-
nearest neighbors method predicts the average of the labels yi of the k points xi in D closest
to xnew, where ‘closest’ is in terms of Euclidean distance if not specified.

It might seem like if N is sufficiently large, then it would always be possible to come up
with good predictions with this method since we can always find a fairly large neighborhood
of observations near the query point xnew and average them. Unfortunately, this intuition
breaks down in high dimensions – i.e., when n is relatively large – which is the case for most
modern problems. This phenomenon is known as the curse of dimensionality, a phrase coined
by the mathematician Richard Bellman in the early 1960s.

For example, the idea that N will be sufficiently large is itself problematic. Suppose we
consider that N = 100 is a sufficiently dense sample when n = 1, i.e., a single-dimensional
problem. Since the sampling density is proportional to N1/n, we would need a sample size
of N = 10010 to achieve the same sampling density for even a ten dimensional problem. In
other words, in high dimensions, all realistic training sets sparsely populate the input space.

This problem will consider some other aspects of the curse of dimensionality, namely that we
end up needing to look at extremely large ‘neighborhoods’ in order to capture a given amount
of nearby data, and the notion of ‘nearness’ behaves strangely because all the points wind up
on the boundary of the sample and so appear to be equidistant.

Note. Below, you can use the fact that the volume of a hypersphere of radius r in n dimensions
is given by

V (r, n) =
πn/2

(n/2)!
rn

when n is even. (When n is odd, the factorial is replaced with a gamma function, but this is
not relevant for the problem.)
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(a) Consider using k-nearest neighbors for points uniformly distributed in an n-dimensional
unit hypercube. If we want to capture a fraction ρ of the observations in a hypercubical
neighborhood around a given point, what should the edge length of this neighborhood
be as a function of n and ρ?

Evaluate this function for (ρ, n) ∈ {(0.01, 10), (0.1, 10), (0.01, 1000)}.

(b) Consider a sphere of radius r in R
n. Show that the fraction of the sphere’s volume in

the surface shell lying at values of the radius between r − ǫ and r, where 0 < ǫ < r, is

ρ = 1−
(

1−
ǫ

r

)n
.

Evaluate ρ for the cases n ∈ {2, 10, 1000}, with ǫ/r ∈ {0.01, 0.5}.

(c) Consider a unit cube in R
n with an inscribed sphere. What are the volumes of the cube

and the sphere as n → ∞? (You can verify this empirically; a proof is not necessary.)

(d) Let x1, . . . , xN ∈ R
n be uniformly distributed in an n-dimensional unit sphere centered

at the origin. Show that the median distance from the origin to the closest data point
is given by the expression

d(N,n) =

(

1−
1

2

1/N
)1/n

.

Evaluate d for N = 500, n = 10.
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