Machine Learning for Finance – Problem Set 2

Neal Parikh

February 13, 2018

Instructions. Do not refer to any outside sources to complete this assignment, in accordance with the honor code. If you discussed any problems with other students, indicate that in your solutions.

- 1. Hyperplanes. What is the distance between two parallel hyperplanes $\{x \in \mathbf{R}^n \mid a^T x = b_1\}$ and $\{x \in \mathbf{R}^n \mid a^T x = b_2\}$?
- 2. Voronoi description of halfspace. Let a and b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b, *i.e.*, $\{x \mid ||x a||_2 \leq ||x b||_2\}$, is a halfspace. Describe it explicitly as an inequality of the form $c^T x \leq d$.
- 3. Which of the following sets are convex?
 - (a) A slab, *i.e.*, a set of the form $\{x \in \mathbf{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
 - (b) A rectangle, *i.e.*, a set of the form $\{x \in \mathbf{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, ..., n\}$. A rectangle is sometimes called a hyperrectangle when n > 2.
 - (c) A wedge, *i.e.*, $\{x \in \mathbf{R}^n \mid a_1^T x \le b_1, a_2^T x \le b_2\}.$
 - (d) The set of points closer to a given point than a given set, *i.e.*,

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\}$$

where $S \subseteq \mathbf{R}^n$.

- 4. Some sets of probability distributions. Let x be a real-valued random variable with $P(x = a_i) = p_i$, i = 1, ..., n, where $a_1 < a_2 < \cdots < a_n$. Of course $p \in \mathbf{R}^n$ lies in the standard probability simplex $P = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\}$. Which of the following conditions are convex in p? (That is, for which of the following conditions is the set of $p \in P$ that satisfy the condition convex?)
 - (a) $\alpha \leq \mathrm{E}[f(x)] \leq \beta$, where $\mathrm{E}[f(x)]$ is the expected value of f(x), *i.e.*, $\mathrm{E}[f(x)] = \sum_{i=1}^{n} p_i f(a_i)$. (The function $f: \mathbf{R} \to \mathbf{R}$ is given.)
 - (b) $P(x > \alpha) \le \beta$.
 - (c) $\operatorname{E}[|x^3|] \le \alpha \operatorname{E}[|x|].$
 - (d) $E[x^2] \leq \alpha$.

- (e) $E[x^2] \ge \alpha$.
- (f) $\operatorname{var}(x) \leq \alpha$, where $\operatorname{var}(x) = \operatorname{E}[x \operatorname{E}[x]]^2$ is the variance of x.
- (g) $\operatorname{var}(x) \ge \alpha$.
- 5. Some functions on the probability simplex. Let x be a real-valued random variable which takes values in $\{a_1, \ldots, a_n\}$ where $a_1 < a_2 < \cdots < a_n$, with $P(x = a_i) = p_i$, $i = 1, \ldots, n$. For each of the following functions of p (on the probability simplex $\{p \in \mathbf{R}^n_+ \mid \mathbf{1}^T p = 1\}$), determine if the function is convex or concave.
 - (a) E[x].
 - (b) $P(x \ge \alpha)$.
 - (c) $P(\alpha \le x \le \beta)$.
 - (d) $\sum_{i=1}^{n} p_i \log p_i$, the negative entropy of the distribution.
 - (e) **var** $x = E[x E[x]]^2$.
- 6. Some simple LPs. Give an explicit solution of each of the following LPs.
 - (a) Minimizing a linear function over a halfspace.

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a^T x \leq b, \end{array}$$

where $a \neq 0$.

(b) Minimizing a linear function over a rectangle.

$$\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & l \leq x \leq u, \end{array}$$

where l and u satisfy $l \leq u$.

(c) Minimizing a linear function over the probability simplex.

minimize
$$c^T x$$

subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

What happens if the equality constraint is replaced by an inequality $\mathbf{1}^T x \leq 1$?

We can interpret this LP as a simple portfolio optimization problem. The vector x represents the allocation of our total budget over different assets, with x_i the fraction invested in asset i. The return of each investment is fixed and given by $-c_i$, so our total return (which we want to maximize) is $-c^T x$. If we replace the budget constraint $\mathbf{1}^T x = 1$ with an inequality $\mathbf{1}^T x \leq 1$, we have the option of not investing a portion of the total budget.