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Instructions. Do not refer to any outside sources to complete this assignment, in accordance with
the honor code. If you discussed any problems with other students, indicate that in your solutions.

1. Cross validation and feature selection. Fed up with friends who insist you “aren’t curing can-
cer” with your statistical algorithms, you decide to turn your attention to applying machine
learning methods to cancer research.

You obtain a dataset D = {(x1, y1), . . . , (xN , yN )}, where the input vector xi ∈ R
n contains

the expression levels of a large number of genes in a tumor tissue and the class label yi ∈ {0, 1}
indicates whether the tumor is cancerous or benign. (The xi are called gene expression data

or microarray data in computational biology, and obtaining them is called gene expression

profiling.) The goal is to fit a binary classifier to diagnose cancerous tumors using gene
expression levels. Generally, the number of tissue samples N is relatively small, e.g., N = 50,
while the number of genes n is in the thousands, e.g., n = 5000.

You decide to begin with a simple approach called nearest centroid classification. Here, we
compute the elementwise averages xbenign and xcancer of input vectors in classes 0 and 1,
respectively; we then classify a new query point xnew based on which of these it is closer to.

In order to make the procedure more efficient, you decide to preprocess the data with a feature
selection procedure. You find the 100 features (genes) with the highest correlation with the
class labels and throw away the measurements on the remaining 4900 genes, i.e., each data
point (x̃i, yi) now has x̃i ∈ R

100 rather than R
5000.

You now want to estimate the test set performance of the classifier. You split your simplified
dataset D̃ = {(x̃1, y1), . . . , (x̃N , yN )} into K = 5 folds, then compute the cross-validation
error of the nearest centroid classifier.

Is this a correct use of cross validation? Why or why not?

2. Reverse linear regression. Suppose you have a dataset D = {(x1, y1), . . . , (xN , yN )} with both
xi, yi ∈ R. There are a number of statistics that measure the linear relationship between
x and y, such as Pearson’s correlation coefficient, which is the covariance between x and y
divided by the product of their standard deviations. It ranges from -1 (perfect negative linear
correlation) to 1 (perfect positive linear correlation), with 0 being no linear correlation.

Clearly, given the definition above, the correlation coefficient between x and y is the same as
that between y and x. This is one case where it does not matter which of x and y are treated
as the ‘input’ or the ‘output’.
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Is it equivalent to regress x on y (i.e., treat x as inputs and y as outputs) and to regress y
on x (i.e., treat y as inputs and x as outputs)? What is the difference between these two
approaches, if any?

Hint. It may help to draw a picture.

3. Interpreting model fitting results. Five different models are fit using the same training data
set, and tested on the same (separate) test set, which has the same size as the training set.
The RMS (square root of MSE) prediction errors for each model, on the training and test
sets, are reported below. Comment briefly on the results for each model. You might mention
whether the model’s predictions are good or bad, whether it is likely to generalize to unseen
data, or whether it is overfit. You are also welcome to say that you don’t believe the results,
or think the reported numbers are fishy.

Model Train RMS Test RMS

A 1.355 1.423
B 9.760 9.165
C 5.033 0.889
D 0.211 5.072
E 0.633 0.633

4. Debugging learning algorithms.

(a) Suppose you train a regularized logistic regression classifier for handwritten digit classi-
fication by solving

maximize
∑N

i=1 log p(yi |xi;w)− λ‖w‖22,

with variable w ∈ R
n. You measure the classification error rate of your model on both

your training set and a holdout cross-validation set. Suppose that your model achieves
low training error but high test set error. How should you adjust λ (i.e., increase or
decrease) in order to improve the model, and why?

(b) Suppose that on the same handwritten digit classification task, you decide to switch to
a soft-margin support vector machine, which involves solving

minimize (1/2)‖w‖22 + λ1T t
subject to yi(w

Txi + b) ≥ 1− ti, i = 1, . . . , N
t � 0,

with variables w ∈ R
n, b ∈ R, t ∈ R

N .

Using the same features as the previous logistic regression model, you find that the SVM
gives both high training error and test error. How should you adjust λ to improve the
model, and why?

(c) Consider fitting a ridge regression model, i.e., carrying out MAP estimation for a linear
regression model with the parameter prior w ∼ N(0, τ2I). If the training error is much
lower than the test error, should you increase or decrease τ to try to improve test error?
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(d) Consider a classification problem, and define the training error to be the fraction of
training examples misclassified by logistic regression. We generally expect a supervised
learning algorithm to do better as the number of training examples N increases. Is it
true or false that we expect the training error to decrease as N increases? Explain.

5. Prediction contests. Several companies have run prediction contests open to the public.
Netflix ran the best known contest, offering a $1M prize for the first prediction of user movie
rating that beat their existing method’s RMS prediction error by 10% on a test set. The
contests generally work as follows (although there are several more complex variations on this
format). The company posts a public data set, that includes the regressors or features and the
outcome for a large number of examples. They also post the features, but not the outcomes,
for a (typically smaller) test data set. The contestants, usually teams with obscure names,
submit predictions for the outcomes in the test set. Usually there is a limit on how many
times, or how frequently, each team can submit a prediction on the test set. The company
computes the RMS test set prediction error (say) for each submission. The teams’ prediction
performance is shown on a leaderboard, which lists the 100 or so best predictions in order.

Discuss such contests in terms of model validation. How should a team check a set of pre-
dictions before submitting it? What would happen if there were no limits on the number of
predictions each team can submit?

6. Ridge regression. The ridge regression problem is to solve

minimize ‖Ax− b‖22 + λ‖x‖22,

with variable x ∈ R
n, where A ∈ R

m×n and λ > 0.

(a) The normal equations. The linear least squares problem has the closed form solution

x⋆ = (ATA)−1AT b (1)

when the columns of the feature matrix A are linearly independent. Derive a similar
closed form expression for the solution of the ridge regression problem.

(b) High-dimensional estimation. If m > n (i.e., there are more features than training
examples), we cannot use the estimator (1) because ATA is singular. One major ben-
efit of regularization methods like ridge regression and the lasso is that they work in
this regime, which is common in modern applications (e.g., when working with gene
expression data). Explain why we can still use the ridge estimator even when m > n.

(c) Bayesian interpretation. Show that MAP estimation in a linear regression model with
a N(0, τ2I) prior on the parameters involves solving a ridge regression problem. Show
that the ridge estimator is also the posterior mean.

Note. Even though MAP estimation is not a fully Bayesian approach, we still say that
interpreting a problem as carrying out MAP estimation under a particular prior amounts
to providing a ‘Bayesian interpretation’ of the original problem. This is common usage,
but it is important to understand what is meant.
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7. MAP estimates and weight decay. Consider using a logistic regression model, with model
weights w ∈ R

n, for a dataset D = {(x1, y1), . . . , (xN , yN )}. Let ŵML and ŵMAP be the
maximum likelihood and maximum a posteriori estimates of w, respectively, where the MAP
estimate is obtained assuming a N(0, τ2I) prior on w.

Prove that ‖ŵMAP‖2 ≤ ‖ŵML‖2. This property is the reason why the use of this type of
regularization is sometimes referred to as weight decay.

8. ℓ1- and ℓ2-norm approximation by a constant vector. What is the solution of the norm
approximation problem with one scalar variable x ∈ R,

minimize ‖x1− b‖,

for the ℓ1- and ℓ2-norms?

9. Least absolute deviations. Just as we can use the ℓ1 penalty ‖x‖1 instead of Tikhonov regular-
ization ‖x‖22, we can consider the use of the loss function ‖Ax− b‖1 rather than the squared
loss ‖Ax−b‖22. The resulting (unregularized) model is known as least absolute deviations, and
it provides a criterion different from least squares for fitting a linear regression line. (It can
also be given a probabilistic interpretation as carrying out maximum likelihood estimation in
a particular model.)

Based on your understanding about the difference between ℓ1 and quadratic penalties, briefly
explain how you might expect least absolute deviations to differ from standard least squares.

10. Dirichlet-multinomial model. One of the main questions in Bayesian modeling is how to
choose a prior distribution appropriate in a given situation. One of the most convenient
approaches is to choose a prior distribution that is conjugate to a given likelihood. The
density of the conjugate prior follows the same general functional form as the likelihood, and
has the property that the posterior lies in the same family as the prior, just with adjusted
parameters. Though the conjugate prior may not be the best choice for a given problem,
its use greatly simplifies many of the calculations that appear in Bayesian statistics. In this
problem, we will carry out these derivations in detail for one example of interest.

Consider modeling coin flips. The natural choice of likelihood is the Bernoulli(p) distribution,
where the distribution parameter p is the probability of flipping heads and so must lie in the
interval [0, 1]. The beta distribution is a distribution on [0, 1], and draws from this distribution
are probabilities that can be used as the parameter of a Bernoulli distribution. The beta
distribution has the density

p(x) ∝ xα−1(1− x)β−1,

with parameters α, β > 0. The normalization constant is a complicated function and is
referred to as the beta function B(α, β); it can be expressed in terms of gamma functions as

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
,

where the gamma function Γ is a continuous extension of the factorial function to all real
numbers. The function satisfies the condition Γ(n) = (n− 1)! for any positive integer n and
the recurrence Γ(x+ 1) = xΓ(x) for any positive real x. (There is an integral representation
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for Γ, but this is not relevant to the problem, and it is not expanded further because there are
numerical methods available to evaluate it in standard scientific computing environments.)

This situation can be generalized to the multinomial distribution over K outcomes; in this
case, the conjugate prior is the Dirichlet distribution, which is a continuous distribution over
the probability simplex, i.e., vectors in R

K that are nonnegative and sum to 1. Samples from
the Dirichlet distribution amount to weights on a K-sided die. The Dirichlet density is

p(x) ∝
K∏
i=1

xαi−1
i ,

with parameters α = (α1, . . . , αK). In this case, its normalization constant is called the
multivariate beta function B(α) and is given by

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
.

Explicitly, then, the Dirichlet density is

p(x) =
Γ(

∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

xαi−1
i .

We now come to the problem. Consider the generative model

ϕ ∼ Dirichlet(α)

z |ϕ ∼ Multinomial(ϕ),

with z ∈ [K], and suppose we have a dataset D = {z1, . . . , zN} generated i.i.d. from the
model above. Explicitly, the likelihood is given by

p(D |ϕ) =
K∏
k=1

ϕNk

k ,

where Nk is the number of observations in D with class k. (Note that the Nk are precisely
the sufficient statistics of the multinomial distribution.)

(a) Posterior distribution. Show that

p(ϕ | D) = Dirichlet(α1 +N1, . . . , αK +NK).

(b) Predictive distribution. Show that the posterior predictive distribution is given by

p(y = k | D) =
Nk + αk

N + 1Tα
.

(c) Give an English interpretation of the two expressions above.

(d) Give a Bayesian interpretation of Laplace smoothing.
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Hint. There are some complicated integrals that appear in calculations involving these dis-
tributions; it is useful to express them in terms of gamma functions. A beta integral is an
integral in the form ∫∫

∆

xpyq dx dy,

where the domain of integration ∆ is the probability simplex. It can be expressed as

∫∫
∆

xpyq dx dy =
p!q!

(p+ q + 2)!
=

B(p+ 1, q + 1)

p+ q + 2
,

where B(u, v) is the beta function.

Similarly, an integral in the form

∫
· · ·

∫
∆

n∏
i=1

xαi−1
i dx1 · · · dxn

is called a Dirichlet integral of type 1. It can be expressed as

∫
· · ·

∫
∆

n∏
i=1

xαi−1
i dx1 · · · dxn =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)
.

11. Laplace smoothing. Suppose you have N observations z1, . . . , zN of a Bernoulli(p) random
variable. Let

p̂ =
1

N

N∑
i=1

zi

be the maximum likelihood estimate of p, and let p̂′ be the Laplace smoothed estimate of p.
Is p̂′ closer to 1/2 than p̂?
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