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Abstract

We develop a simple operator splitting method for solving a primal conic optimiza-
tion problem; we show that the iterates also solve the dual problem. The resulting
algorithm is very simple to describe and implement and yields solutions of modest
accuracy in competitive times. Several versions of the algorithm are amenable to
parallelization, either via distributed linear algebra or GPU-accelerated matrix-vector
multiplication. We provide a simple, single-threaded C implementation for reference.
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1 Introduction

We present a first-order algorithm for solving large-scale conic optimization problems. While
variants of the algorithm have previously been described [4, 9, 39, 50], our aim is to provide
a short but complete derivation and a reference C implementation. Our goal is to create
a black-box solver that can be used in conjunction with modeling tools such as CVX [23].
Though we do not do so here, this implementation can be parallelized via distributed linear
algebra or general-purpose GPU (GPGPU) programming. Many extensions and variations
on the algorithm exist, but we focus on the simplest and most generic version. With an
interface to CVX [23], this solver provides the ability to rapidly prototype large-scale opti-
mization problems. This solver does not exploit problem structure beyond sparsity and thus
is not necessarily the most efficient, but instead provides a simple way to solve problems in
a parallel and distributed fashion.

We provide detailed discussions of the implementation and demonstrate that the simple
implementation performs reasonably well on a variety of problems, including the DIMACS
test problems. This implementation lays the groundwork for further work in distributed
(first-order) conic solvers.

2 Cone programming

Let P be the (primal) cone program

minimize cTx
subject to Ax+ s = b

s ∈ K,

with variables x ∈ Rn and s ∈ Rm, where K = K1 × · · · × Kq ⊂ Rm is a Cartesian product
of q closed convex cones. Here, each Ki has dimension mi, so

∑q
i=1 mi = m. We assume

that m ≥ n and that A has full column rank. A pair of variables (x, s) ∈ Rn ×Rm is primal
feasible if Ax+ s = b and s ∈ K. The problem data are A, b, c, and (a description of) K.

When we fix particular values for the cones Ki, we recover standard problem families as
special cases. The most common cones are

R+ = {x ∈ R | x ≥ 0},
Qd = {(t, v) ∈ Rd+1 | ‖v‖2 ≤ t},
Sn
+ = {X ∈ Sn | X � 0},

known as the nonnegative reals, the second-order cone (of order d), and the positive semidef-
inite cone, respectively. (By convention, we define Q0 = R+.) These three cones are known
as the symmetric cones, and an instance of P that restricts each Ki to be one of these is
known as a symmetric cone program. If all the Ki are a single type of one of the cones
above, then P is known as a linear program (LP), second-order cone program (SOCP), and
semidefinite program (SDP), respectively. The method we describe in this paper allows K
to be an arbitrary closed convex cone, although we focus specifically on SOCPs.
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The dual problem of P is
maximize −bTy
subject to −ATy = c

y ∈ K∗,

with (dual) variable y ∈ Rm, where K∗ = K∗
1 × · · · × K∗

q is the dual cone of K. We say that
y is dual feasible if ATy + c = 0 and y ∈ K∗.

When (x, s) is primal feasible and y is dual feasible, the quantity η = cTx + bTy = sTy
is called the duality gap. The duality gap is always nonnegative; this property, weak duality,
tells us, for example, that −bTy is a lower bound on the optimal value p⋆ of P whenever y
is dual feasible. When the duality gap is zero, then (x, s) is a solution of P and (x, s, y) is
called a primal-dual solution of P . We denote a primal-dual solution by (x⋆, s⋆, y⋆). We say
that s and y are complementary when the duality gap sTy is zero.

The goal of computing a primal-dual solution (x⋆, s⋆, y⋆) can thus be expressed as at-
tempting to satisfy the following optimality conditions:

Ax⋆ + s⋆ = b, ATy⋆ + c = 0, s⋆ ∈ K, (s⋆)Ty⋆ = 0, y⋆ ∈ K∗.

These include primal feasibility, dual feasibility, and complementarity, the last of which
implies zero duality gap. A primal-dual solution can fail to exist for several reasons, such
as when P is unbounded or infeasible. In this paper, we limit our discussion to finding a
solution when one exists.

3 Primal-dual operator splitting method

Our algorithm is a first-order method based on the alternating direction method of multipliers
(ADMM), also known as Douglas-Rachford splitting [7, 15].

We first rewrite P to be in a form amenable to ADMM. Let IS denote the indicator
function of the set S, so IS(z) is 0 for z ∈ S and +∞ otherwise. Then P can be expressed as

minimize cTx+ IE(x, s) + IK(s)

where E = {(x, s) | Ax+s = b}, i.e., the equality constraints. We then replicate the variables
x and s and write the problem in consensus form [7, §7.1],

minimize f(x̃, s̃) + g(x, s)
subject to x̃ = x, s̃ = s,

where f(x̃, s̃) = cT x̃ + IE(x̃, s̃) and g(x, s) = IRn(x) + IK(s). The dual of this consensus
problem is

maximize −bTν
subject to ATν + c = 0

ν ∈ K∗,

with variable ν ∈ Rm, which is exactly D.
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Applying ADMM to the (primal) consensus problem gives the algorithm

(x̃k+1, s̃k+1) = proxλf (x
k + λuk, sk + λyk)

(xk+1, sk+1) = proxλg(x̃
k+1 − λuk, s̃k+1 − λyk)

uk+1 = uk + (1/λ)(xk+1 − x̃k+1)

yk+1 = yk + (1/λ)(sk+1 − s̃k+1),

where
proxλh(v) = argmin

z

(

h(z) + (1/2λ)‖z − v‖22
)

is the proximal operator of h with parameter λ > 0 [37]. Here, the parameter λ is an
algorithm parameter.

We can simplify the algorithm above. Since f is an indicator function plus a linear
function, we can include the linear term in the argument of the proximal operator. This
reduces the first step to a projection onto E . Since g is an indicator function over Rn × K,
this means xk = x̃k and the second step reduces to a projection onto K. Finally, because
xk = x̃k, if u0 = 0, then uk = 0 for all iterates k. With these simplifications, the final form
of our primal-dual operator splitting (PDOS) method is

(xk+1, s̃k+1) = ΠE(x
k − λc, sk + λyk)

sk+1 = ΠK(s̃
k+1 − λyk)

yk+1 = yk + (1/λ)(sk+1 − s̃k+1),

where ΠS denotes Euclidean projection onto the set S. Although the algorithm derives from
an operator-splitting applied to the primal problem P , the iterates asymptotically yield
primal and dual solutions; hence, the name primal-dual operator splitting.

3.1 Extensions

There are a few variations on the basic method that can be very helpful in practice.

Over-relaxation. Numerical experiments in [14, 16] suggest that the algorithm can be
improved by over-relaxation, which consists of replacing occurrences of s̃k+1 with

αs̃k+1 + (1− α)sk,

where α ∈ (1, 2) is the over-relaxation parameter. Typically, α ∈ [1.5, 1.8] yields some
improvement. The convergence results for ADMM (and therefore, PDOS) hold without
modification; see, e.g., [15].
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Warm starting. The PDOS algorithm can be started from default values such as 0; it
can also be started from a good guess of the optimal values of x, s, and y. (This is called
warm-starting.) One common situation where this occurs is when we solve a sequence of
similar problems, with perturbed values of the data A, b, and c. In this case, we can warm
start PDOS with the solution to the previous problem. Warm starting can significantly
reduce the number of iterations required to converge. See §7.2.4 for an example.

Approximate projection. Another variation replaces the (subspace projection) update
(xk+1, s̃k+1) = ΠE(x

k − λc, sk + λyk) with a suitable approximation. We replace (xk+1, s̃k+1)
with any (xk+1, s̃k+1) that satisfies

‖(xk+1, s̃k+1)− ΠE(x
k − λc, sk + λyk)‖2 ≤ µk,

where µk > 0 satisfy
∑

k µk < ∞. This variation is particularly useful when an iterative
method is used to compute (xk+1, s̃k+1). The convergence results for ADMM (and therefore,
PDOS) hold without modification; see, e.g., [15].

4 Related work

Before continuing a more detailed discussion of the properties and implementation of PDOS,
we pause to discuss related work and the similarities and differences of our approach. This
section may be skipped with little to no detriment to the reader.

Many methods have been developed to solve P , the most widely-used being interior-
point methods [6,8,32,34,51,53]. These methods reliably and efficiently solve most small to
medium-sized problems. They are known to converge to ǫ accuracy in O(log(1/ǫ)) iterations.
Each iteration is dominated by the solution of the KKT system, which in the worst case
requires O((m+n)3) flops at each iteration. If problem structure or sparsity is exploited, the
computational complexity can be substantially less. To solve the KKT system, we must store
A and AT explicitly. In practice, interior-point methods find ǫ accurate solutions in a few tens
of iterations independent of problem scale and structure. However, the computational cost
of each iteration may be prohibitively expensive, and for larger problems, other approaches
must be explored.

This motivates the development of matrix-free interior-point methods such as those pro-
posed by Gondzio which only require the ability to multiply by A and AT [17, 21]. These
need at most O(k(m+n)2) flops (which can be reduced if sparsity is exploited) per iteration,
where k is the number of matrix vector multiplies needed to obtain a desired accuracy. If
k ≪ m+ n, then this approach is computationally more attractive than traditional interior-
point methods. Furthermore, this approach is amenable to general-purpose GPU (GPGPU)
implementations, admitting parallel and large-scale implementations.

Alternatively, first-order methods, such as gradient descent and projected gradient de-
scent can be used to solve P [5, 25, 28–31]. Gradient-type, first-order methods converge
to ǫ accuracy in O(1/ǫ2) iterations with at most O(mn) flops required for each iteration.
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With additional regularity assumptions (e.g., Lipschitz continuous gradients, strong convex-
ity, etc.), the convergence rate can be substantially improved. In practice, these methods
achieve low accuracy in a few hundred of iterations and take significantly more iterations
to achieve high accuracy. Nonetheless, the computational complexity for each iteration may
be substantially less than that required for an interior-point method and thus provide a
reasonable way to obtain low accuracy solutions. Additionally, many first-order methods
admit trivially parallelizable implementations. These methods work extremely well when
tuned to very specific application domains, such as in compressed sensing and image recon-
struction, etc. Although many attempts have been made to generalize first-order methods
for large-scale optimization, no de facto standard has yet emerged.

PDOS is an attempt to design and implement a general conic solver for large-scale op-
timization. It is a first-order penalty method that solves a sequence of quadratic penalty
problems via distributed linear algebra. In particular, the projection onto E can be computed
first by finding xk+1,

xk+1 = argmin
x

(

cTx+ (1/2λ)‖x− xk‖22 + (1/2λ)‖b− Ax− sk − λyk‖22
)

,

and then s̃k+1 = b − Axk+1. Without further assumptions, it has a worst-case convergence
rate of O(1/ǫ2). Computing xk+1 requires, in the worst case, O(mn2) flops, but several tricks
can be used to reduce the computation cost (factorization caching, warm-starting iterative
solvers, etc.). We now focus on three other works that are more closely related to ours.

Wen, et al., provide an ADMM-based SDP solver [50]. Minor differences aside, their
algorithm and ours are essentially the same; in this sense, our algorithm is not new. The
main difference is that we focus primarily on SOCPs [1,26], since our emphasis is to provide
an algorithm that is easily parallelized and distributed. While projections onto large second-
order cones can be parallelized, it is at present unknown how to parallelize or distribute the
projection onto large semidefinite cones.

Pock and Chambolle design a family of diagonal preconditioners for solving the saddle-
point problem associated with the Lagrangian of P [9, 39]. Their preconditioners can be
interpreted as a scaling of the primal and dual space and correspond directly to our concept
of scalings in §6.3. Although they demonstrate on several examples that diagonal precondi-
tioning can improve the performance of their first-order solver, they only consider the case
of linear programs. Our observation has been that their proposed diagonal preconditioner
works well on linear programs, but can be inadequate for second-order cone programming.

More recently, Aybat and Iyengar present the augmented Lagrangian algorithm (ALCC),
a first-order algorithm proven to converge to ǫ accuracy in O(log(1/ǫ)) (outer) iterations [4].
Its iterates are extremely similar to PDOS. Instead of computing the Euclidean projection
onto E , they compute

xk+1 = argmin
x

(

min
s∈K

(

cTx+ (1/2λ)‖b− Ax− s− λyk‖22
)

)

,

which they solve with projected gradient descent. Thus, the aggregate convergence rate is
O(1/ǫ log(1/ǫ)) with each (outer) iteration requiring at most O(kmn) flops. Each iteration
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requires solving a (simple) optimization problem. This relationship between PDOS and
ALCC suggests that if sk ≈ s̄⋆ (where s̄⋆ is the solution to the partial minimization problem
over s), one might be able to accelerate the PDOS algorithm.

Finally, we point out that although we do not consider problems that may be infeasible or
unbounded, we can also apply similar operator splitting techniques to solve a homogeneous
self-dual embedding (HSD) [52,54] of P to address these pathologies. We plan to detail this
approach in a separate paper.

5 Convergence theory

5.1 Asymptotic optimality

In this section, we will show that, assuming a primal-dual solution exists, the iterates
(xk, sk, yk) asymptotically satisfy the optimality conditions. To show that the optimality
conditions hold asymptotically, we use general ADMM convergence theory; see, e.g., [7, §3.2],
or [15] for the case of approximate projections and dual variable convergence. In our argu-
ment, we assume the subspace projection ΠE is done exactly. In the case of approximate
projections, our argument can be made correct with only minor modifications.

The cone constraints and the complementarity condition are satisfied exactly by the
iterates (xk, sk, yk), so

sk ∈ K, yk ∈ K∗, skTyk = 0,

for all k. Since sk is the Euclidean projection of s̃k −λyk−1 onto K, this implies that sk ∈ K,
and λyk = sk − (s̃k − λyk−1) is orthogonal to sk (implying skTyk = 0). That yk ∈ K∗ can be
proved via the Moreau decomposition [37]

v = ΠK(v) + ΠK◦(v),

where K◦ = −K∗ is the polar cone (i.e., the negative dual cone). With v = s̃k − λyk−1 and
using the fact that λ > 0, we obtain

−yk = (1/λ)ΠK◦(s̃k − λyk−1),

which is in the polar cone, so clearly yk ∈ K∗.
It remains to show that as k → ∞, the primal and dual equality constraints are satisfied.

ADMM convergence theory guarantees that we have

sk − s̃k = Axk + sk − b → 0,

as k → ∞ [7, §3.2]. This implies that (xk, sk) asymptotically satisfy the primal equality
constraints. Furthermore, the theory also states that yk → y⋆, an optimal solution to D [15].
Therefore, we conclude that as k → ∞,

ATyk + c → 0.

In summary, the iterates (xk, sk, yk) asymptotically satisfy the equality constraints and ex-
actly satisfy the cone constraints and the complementarity condition.
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5.2 Stopping conditions

The convergence analysis above tells us that a stopping criterion of the form

‖Axk + sk − b‖2 ≤ ǫprimal, ‖ATyk + c‖2 ≤ ǫdual

where ǫprimal, ǫdual > 0 are tolerances, will eventually be satisfied when a primal-dual solution
exists. A typical choice for the tolerances is

ǫprimal = ǫ(1 + ‖b‖2), ǫdual = ǫ(1 + ‖c‖2),
where ǫ > 0 corresponds roughly to the required precision. (These are error measures similar
to the ones used in the 7th DIMACS challenge [38].)

We can add an additional condition on the duality gap,

cTxk + bTyk ≤ ǫgap,

where ǫgap > 0 is a duality gap tolerance. The quantity on the left is often called the surrogate
gap, since it is equal to the duality gap only when xk and yk exactly satisfy the equality
constraints. A typical choice of the tolerance is

ǫgap = ǫ(1 + |cTxk|+ |bTyk|).
However, this condition is in some sense redundant, since the surrogate duality gap can be
bounded in terms of the primal and dual equality constraint residuals.

6 Implementation

In this section, we discuss a number of different details that are critical to an efficient
implementation of the basic method.

6.1 Projecting onto cones

At each iteration, we project v = s̃k+1 − λyk onto K. We project onto K by projecting onto
Ki separately and in parallel. Typically, computing the projection onto Ki can be done with
little computational effort, and in many cases analytical solutions exist. We describe some
typical ones below.

Projecting v onto the free cone R gives s = v; projecting v onto the zero cone {0} gives
s = 0. Projecting v onto R+, the cone of nonnegative reals (which is the second-order
cone Q0), only takes the nonnegative part, s = (v)+ = max(v, 0). Projecting v onto the
second-order cone Qk has the closed-form solution

ΠQk(t, v) =











0 ‖v‖2 ≤ −t,

(t, v) ‖v‖2 ≤ t,

(α, αv/‖v‖2) otherwise,

where α = (1/2)(‖v‖2 + t). Projecting onto the positive semidefinite cone can be done by
eigendecomposition, followed by taking the nonnegative parts of the eigenvalues [50]. For
other conic projections (among other proximal operators), see [37].

9



6.2 Projecting onto equality constraints

At each iteration, we project (u, v) = (xk − λc, sk + λyk) onto E , which has the analytical
solution ΠE(u, v) = (x, s), where

x =
(

I + ATA
)−1 (

u+ AT (b− v)
)

, s = b− Ax.

We describe below two basic methods for doing this as well as a hybrid approach. For other
general approaches to solving this linear system, we refer the reader to [20, 42,49].

6.2.1 Direct method

When A is dense, several standard methods can be used to compute the projection. One
approach is to form I+ATA and compute its Cholesky factorization I+ATA = LLT , which
costs O(mn2) flops. We then compute x and s as

x = L−TL−1
(

u+ AT (b− v)
)

, s = b− Ax,

where the multiplications by L−1 and L−T are carried out by forward and backward substi-
tution, respectively. This costs O(mn) flops. Thus the first projection costs O(mn2) flops;
by caching L, subsequent iterations cost O(mn) flops.

A variation on this, with better numerical properties, is to compute the QR decomposition

QR =

[

A
I

]

.

and compute the projection using

x = R−1R−T
(

u+ AT (b− v)
)

, s = b− Ax.

The complexity of this method is the same as the one above: O(mn2) flops for the first
projection, and O(mn) flops for subsequent projections.

When A is sparse, we compute the sparse LDL factorization

PLDLTP T =

[

I A
AT −I

]

,

where P is a permutation matrix chosen to reduce fill-in, L is a lower triangular matrix, and
D a diagonal matrix. (This is in contrast to the more generic LDL factorization in which
D must include 2 × 2 blocks.) This (simpler) factorization is guaranteed to exist for any
permutation P , since the coefficient matrix is quasi-definite [19, 43].

The projection can be computed using
[

z
x

]

= P−TL−TD−1L−1P−1

[

b− v
u

]

, s = z + v,

where z = b− v − Ax is a dual variable.
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Since the coefficient matrix is quasi-definite, the permutation matrix can be chosen based
on the sparsity pattern of A and not its entries. Moreover, we can determine the signs of
the entries in D before the factorization is computed; this provides a numerically stable
LDL solver without the need for dynamic pivoting, allowing us to implement more efficient
algorithms. This property is exploited in the code generation system CVXGEN [27] and
interior-point solvers such as ECOS [13].

This LDL factorization is carried out once and cached; the computational effort of this
factorization depends on the fill-in of the factorization, which determines the number of
nonzeros entries in L, nL. The number of nonzeros in L is always at least as many in A,
which is nA. After the factorization is computed, subsequent projections can be computed
by a forward and backward substitution, which requires O(nL) flops. In this case, the ratio
of the factor effort to the solve effort is less than m (which is the factor in the dense case),
but always more than one.

6.2.2 Indirect method

An indirect method such as conjugate gradients (CG) [24] or LSQR [36], solves for x using
an iteration that only requires multiplication by A and by AT . In theory the iteration
terminates with the solution in n steps, but the main value in practice is when an adequate
approximation is obtained in far fewer iterations. This can be aided by an appropriately
chosen preconditioner M ≈ I + ATA. (The preconditioner M is chosen so that finding the
solution q to Mq = r is computationally easy.)

Starting with an initial value x = x0, we form

r0 = u− x0 − AT (Ax0 − b+ v), q0 = M−1r0, p0 = q0,

and then repeat the iteration

αi = (qTi ri)/(‖pi‖22 + ‖Api‖22)
xi+1 = xi + αipi
ri+1 = ri − αi

(

pi + AT (Api)
)

qi+1 = M−1ri+1

βi = (qTi+1ri+1)/(q
T
i ri)

pi+1 = qi+1 + βipi,

until ‖ri+1‖2 (which is the norm of the residual) is sufficiently small. Once an x is obtained,
we compute s = b − Ax. Note that while (x, s) ∈ E , it is only approximately equal to the
Euclidean projection of (u, v) (i.e., the point in E that is closest to (u, v)).

Each CG iteration requires one multiplication of a vector by A and one by AT . Thus
each CG step has a complexity of O(nA), where nA is the number of nonzero entries in A.
(The matrix-vector multiplies can be distributed.)

Although an indirect method only yields an approximation to the Euclidean projection,
ADMM convergence theory tells us that if the projection error is bounded by a summable
sequence, then the algorithm will converge [15]. One strategy is to require a CG tolerance
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of 1/k2 at every iteration. We, however, employ a heuristic strategy: we fix the maximum
number of CG iterations and warm start CG with x0 = xk, the previous PDOS solution
of x. This yields inaccurate projections at first, but more accurate ones as ADMM begins
to converge. It is typical for each step to involve a number of iterations ranging from tens
(at the beginning) to just a few (at the end). We emphasize that this heuristic does not
guarantee convergence in theory, although the algorithm terminates in practice (and can
be made to converge in theory by tightening the tolerances after a fixed number of PDOS
iterations).

6.2.3 Hybrid method

In the previous section, if we choose the preconditioner M = I (i.e., no preconditioning
whatsoever), CG requires at most n iterations to solve the linear system; at the other ex-
treme, with M = I + ATA, CG requires only one iteration to converge to high accuracy,
reducing the indirect method to a direct one. Therefore, we can hybridize the two approaches
by choosing preconditioners that are more similar to I + ATA (a direct method) or more
similar to I (an indirect method).

Some possibilities for M are M = diag(I + ATA) (Jacobi preconditioner), the diagonal
blocks of I +ATA, or the incomplete Cholesky factorization of I +ATA [42]. When the full
Cholesky factorization is used, the indirect and direct method agree.

6.3 Problem scaling

Although PDOS converges in theory for any choice of λ, it has been observed that problem
scalings and preconditioning can affect the convergence rate in practice [18, 39]. Instead of
solving P , we solve an equivalent problem (denoted P̂) with variables x̂, ŝ, and ŷ,

minimize ĉT x̂

subject to Âx̂+ ŝ = b̂
ŝ ∈ K.

This problem is solved with data K, Â = DAE, b̂ = Db, and ĉ = Ec, where D ∈ Rm×m and
E ∈ Rn×n are diagonal matrices of the form

D = diag(π1Im1
, . . . , πqImq

), E = diag(δ),

with π = (π1, . . . , πq) ∈ R
q
++ and δ ∈ Rn

++, and where In is the n× n identity matrix. The
variables (x, s, y) can be related to (x̂, ŝ, ŷ) via the change of variables

x = Ex̂, s = D−1ŝ, y = Dŷ.

With this change of variables, the optimality conditions of P and P̂ are equivalent.
We apply the PDOS algorithm to P̂ , but evaluate the stopping conditions in terms of

the original variables. Simple algebra will verify that the following stopping criterion is
equivalent to the stopping criterion as measured in the original variables,

‖D−1(Âx̂k + ŝk − b̂)‖2 ≤ ǫprimal, ‖E−1(Âŷk + ĉ)‖2 ≤ ǫdual,
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|ĉT x̂k + b̂T ŷk| ≤ ǫgap.

We now turn our attention to the special case when D = I and E = (1/
√
µ)I, with µ > 0.

In this case, the first step of PDOS can be evaluated in terms of the original coordinates as

xk+1 = argmin
x

(

cTx+ (µ/2λ)‖x− xk‖22 + (1/2λ)‖b− Ax− sk − λyk‖22
)

,

and s̃k = b−Axk+1. This means that µ (and, more generally, E) controls the ratio between
the two quadratic penalties.

Choice of D and E. Empirically, we have observed that choosing D and E to equilibrate
the norms of the rows and columns of Â = DAE appears to reduce the number of iterations
needed to obtain an ǫ-solution. It also has the additional effect of reducing the condition
number of I+ ÂT Â. Many algorithms exist to equilibrate or balance matrices, specifically in
the context of matrix preconditioners [35,41]. We present one such algorithm here, although
many others can be used.

We first group together the rows of A to form Ã ∈ Rq×n as follows,

Ã2
ij = (1/|κi|)

∑

k∈κi

A2
kj

where κi is the index set corresponding to the elements of s which are in Ki, and so |κi| = mi.
We equilibrate the rows and columns of Ã to obtain the scaling vectors π ∈ Rq and δ ∈ Rn:

πi =

(

n
∑

j=1

Ã2
ij

)−1/2

,

δj =

(

q
∑

i=1

Ã2
ijπ

2
i

)−1/2

.

We then construct D and E and scale the data once before running the PDOS algorithm.
Note that this is equivalent to applying diagonal preconditioners, such as ones proposed

in [39], to the problem. However, we have found that this matrix equilibration appears to
yield better results for second-order cone programs than the ones described in [39] (which
are designed for linear programs). More sophisticated preconditioners can (and should) be
designed to improve the convergence behavior of PDOS.

Choice of λ. With Â equilibrated and the problem data scaled, a good choice of λ appears
to be

λ = ‖b̂‖2/‖ĉ‖2.
Intuitively, this choice of λ attempts to balance ‖ŝk‖2 (which, when Â is equilibrated, is on
the order of ‖b̂‖2) and λ‖ŷk‖2 (which is on the order of ‖ĉ‖2). There is no reason to believe
that this is the best choice of λ, although it seems to perform well in our experiments in §7.
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6.4 Parallel and distributed implementations

The main advantage of PDOS is that each step of the algorithm is simple and easily par-
allelized or distributed, allowing PDOS to scale to multiprocessing environments such as
compute clusters. Cone projections are trivially parallelized (by projecting onto Ki sep-
arately and in parallel), and second-order cone projections can be further subdivided by
exploiting the property

‖(x, y)‖2 = ‖(‖x‖2, ‖y‖2)‖2,
thus reducing large, second-order cones into smaller, more manageable cones.

Any of the approaches—the direct, indirect, or hybrid method—for projecting onto the
linear system can be parallelized by leveraging parallel algorithms for LDL factorization
and sparse matrix-vector multiplication. For instance, Elemental / Clique can be used to
distribute the direct solver on distributed memory machines [40], while NVIDIA’s CUDA
could be used to accelerate the indirect solver [33].

7 Numerical examples

The C source, along with a Python extension module and CVX shim, are available for
download on Github at http://www.github.com/cvxgrp/pdos. All numerical examples
are run in Matlab on a 4-core, 3.4GHz Intel Xeon processor with hyperthreading and 16GB
of RAM.

We begin with a description of our experimental setup in §7.1, which is the same for all
examples. We then describe the family of portfolio optimization problems in §7.2 and report
several numerical results, including an example of warmstarting in §7.2.4 by tracing out a
risk-return tradeoff curve. We also report the results of PDOS on a family of ℓ1-regularized
least-squares problems in §7.3. Finally, we run PDOS on the DIMACS benchmarks and
compare its results to SeDuMi in §7.4.

7.1 Experimental setup

For our experiments, we compare both the direct and indirect PDOS solver against SeDuMi
(version 1.21) [48]. Unless otherwise specified, we use default SeDuMi tolerances. SeDuMi
utilizes a multithreaded BLAS, so in our case, it can use up to eight independent threads.
This is in contrast to our implementation of the direct and indirect PDOS solvers, which
are both single-threaded. In our implementation of the direct and indirect PDOS solvers,
we use the (default) values of ǫ = 10−3 and use an overrelaxation parameter of α = 1.8.
For the direct solver, we use AMD to select the permutation and use a simple LDL to solve
the subsequent linear system [2,3,10–12]. For the indirect solver, we use our own conjugate
gradient algorithm with a maximum of 10 CG iterations. Our CG code has a (default)
tolerance of 10−4.
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7.2 Portfolio optimization

We consider a simple long-only portfolio optimization problem [8, p. 185–186], where we
choose relative weights of assets to maximize risk-adjusted return. The problem is

maximize µTx− γ(xTΣx)
subject to 1Tx = 1, x ≥ 0,

where the variable x ∈ Rn represents the portfolio, µ ∈ Rn is the vector of expected returns,
γ > 0 is the risk-aversion parameter and Σ ∈ Rn×n is the asset return covariance, given in
factor model form,

Σ = FF T +D.

Here F ∈ Rn×m is the factor-loading matrix, and D ∈ Rn×n is a diagonal matrix (of
idiosyncratic risk). The number of factors in the risk model is m, which we assume is
substantially smaller than n, the number of assets.

This problem can be converted in the standard way (say, via a parser-solver such as
CVX [22,23]) into an SOCP,

maximize µTx− γ(t+ s)
subject to 1Tx = 1, x ≥ 0

‖D1/2x‖2 ≤ u, ‖F Tx‖2 ≤ v
‖(1− t, 2u)‖2 ≤ 1 + t
‖(1− s, 2v)‖2 ≤ 1 + s

with variables x ∈ Rn, t ∈ R, s ∈ R, u ∈ R, and v ∈ R.

7.2.1 Problem instances

We solve the portfolio problem in four different sizes: small (m = 10, n = 100), medium
(m = 30, n = 1000), large (m = 100, n = 10000), and massive (m = 300, n = 100000).
These names only correspond to their sizes relative to each other. For all problems, we
choose γ = n.

7.2.2 Convergence

Figure 1 shows the convergence plot of a large portfolio problem (m = 100 and n = 10000)
using a direct method. Note that the primal and dual residuals and the pseudo-gap are
plotted on an absolute scale. The plots show convergence behavior as a function of the
iterates. The linear convergence rate in Figure 1 is atypical and is a result of the regularity
structure in the portfolio problem.1 Typical PDOS convergence behavior is slow to achieve
high accuracy, although significant progress is made early on. Depending on the application,
if acceptable, a low-accuracy solution with a certifiable (pseudo-)gap can be found fairly
quickly.

1It is suspected that PDOS automatically exploits the underlying strong concavity of the objective in the
portfolio problem even when transformed to a linear cone program, although we did not explore this further.
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Figure 1: The convergence of the primal residual ‖Axk + sk − b‖2 (left, solid) and
dual residual ‖AT yk + c‖2 (left, dashed), along with the pseudo-gap |cTxk + bT yk|
(right) for the large portfolio problem using a direct method. The vertical dotted
line in all plots shows where the stopping conditions are satisfied (at iteration 58).

factors (m) assets (n) SeDuMi PDOS (d) PDOS (i)
10 100 0.163s 0.001s 0.001s
30 1000 0.276s 0.016s 0.026s
100 10000 5.86s 0.812s 1.299s
300 100000 328.5s 58.73s 81.17s

Table 1: Comparison of average runtime (over 10 problem instances) between
SeDuMi (multithreaded), PDOS with a direct solver (single-threaded, denoted with
‘(d)’), and PDOS with an indirect solver (single-threaded, denoted with ‘(i)’) for
solving portfolio problem instances.

7.2.3 Timing results

For each problem size, we solve 10 different instances and report the average time needed to
solve the problem instance with SeDuMi (using CVX) [23, 48], PDOS with a direct solver,
and PDOS with an indirect solver. The timing results are summarized in Table 1. SeDuMi
is run with a lower tolerance (10−3) to make a fair comparison with PDOS. In all instances,
the average relative error of PDOS’s reported objective value is within 1% of the optimal
(as found by SeDuMi at a higher precision).

7.2.4 Warm start

In portfolio optimization (§7.2) it may be desirable to plot a tradeoff curve as the parameter
γ is varied. In these situations—when only the problem data has changed—warm starting
PDOS yields significant benefits.
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Figure 2: Portfolio tradeoff curve as computed by SeDuMi (left) and PDOS (right).

To illustrate the effect of warm starting, we solve the small portfolio problem (m = 10,
n = 100) with 1000 different values of γ, evenly spaced on a log scale between 10−1 and
103. (This scenario occurs when determining the tradeoff between risk and return.) We then
solve the same sequence of problems with SeDuMi.

Figure 2 shows the resulting tradeoff curve when solved via SeDuMi and PDOS. Qual-
itatively, these two curves agree. SeDuMi took 3.1 minutes to compute this tradeoff curve
while direct PDOS, because of warmstarting, took 5.1 seconds, and indirect PDOS method
took 3.5 seconds, almost a factor of 50 in savings.

7.3 ℓ1-regularized least-squares

The ℓ1-regularized least-squares, or lasso, problem is

minimize ‖Ax− b‖22 + γ‖x‖1,

with variable x ∈ Rn, data A ∈ Rm×n, and b ∈ Rm. Typically, n ≫ m, where m is
the number of observations. The parameter γ > 0 (typically called λ, but renamed to avoid
confusion with the PDOS algorithm parameter) trades off the strength of regularization with
the goodness of fit. In particular, if γ = 0, then the solution will be dense; if γ > γmax =
‖2AT b‖∞, then the solution will be trivial. In the interval [0, γmax], the solution is typically
(very) sparse.

The lasso problem can be converted in the standard way (say, via a parser-solver such as
CVX [22,23]) into an SOCP,

minimize t+ γ1T s
subject to −s ≤ x ≤ s

‖Ax− b‖2 ≤ u
‖(1− t, 2u)‖2 ≤ 1 + t
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observations (m) variables (n) SeDuMi PDOS (d) PDOS (i)
250 5000 13.38s 12.74s 16.82s
1250 10000 418.5s 113.7s 132.1s
2500 50000 12631s 2144s 2144s

Table 2: Comparison of average runtime (over 10 problem instances) between
SeDuMi (multithreaded), PDOS with a direct solver (single-threaded, denoted with
‘(d)’), and PDOS with an indirect solver (single-threaded, denoted with ‘(i)’) for
solving lasso problem instances.

with variables x ∈ Rn, t ∈ R, s ∈ Rn, and u ∈ R.

7.3.1 Problem instances

We solve the lasso problem in three different sizes: small (m = 250, n = 5000), medium
(m = 1250, n = 10000), and large (m = 2500, n = 50000). For all problems, we choose
γ = 0.01γmax. The large problem is chosen such that the lasso problem has approximately
1GB of nonzeros.

7.3.2 Timing results

For each problem size, we solve 10 different instances and report the average time needed to
solve the problem instance with SeDuMi (using CVX) [23, 48], PDOS with a direct solver,
and PDOS with an indirect solver. The timing results are summarized in Table 2. SeDuMi
is run with a lower tolerance (10−3) to make a fair comparison with PDOS. In all instances,
the average relative error of PDOS’s reported objective value is within 1% of the optimal
(as found by SeDuMi at a higher precision).

7.4 DIMACS benchmarks

In this section, we present the results of running our algorithm on the 7th DIMACS Challenge
problems [38]. Table 3 summarizes the results.

With the maximum number of iterations set to 10000, PDOS is able to solve 12 of the 16
challenge problems to within 1% accuracy, requiring fewer than 1500 iterations on average
to converge to the desired tolerance.

The problems for which PDOS fails result from poor problem scaling and is hardly
surprising, since PDOS is a first-order method and, like other first-order methods, is sensitive
to problem scalings. It also illustrates the limitations of our matrix equilibration routine:
a well-chosen scaling is superior to the automatic scaling selected by matrix equilibration.
More interestingly, SeDuMi also runs into numerical problems with these problems as well. It
is unsurprising that in some cases, SeDuMi outperforms PDOS—especially considering that
SeDuMi is multithreaded and PDOS is single-threaded—but the benchmark demonstrates
our simple algorithm appears to sufficiently solve a range of SOCPs to modest accuracy.
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runtime objective value
name SeDuMi PDOS (d) PDOS (i) SeDuMi PDOS (d) PDOS (i)
nb 2.1s 1.1s 4.1s −0.0507 −0.0503 −0.0503

nb L1 1.4s 5.9s 21.6s −13.012 −12.920 −12.922
nb L2 1.3s 1.6s 7.5s −1.629 −1.625 −1.625

nb L2 bessel 0.9s 0.1s 0.5s −0.103 −0.102 −0.102
nql30 0.3s 0.1s 0.3s −0.946 −0.945 −0.945
nql60 1.1s 1.5s 3.4s −0.935 −0.933 −0.956
qssp30 0.5s 0.4s 1.0s −6.497 −6.489 −6.492
qssp60 2.8s 4.7s 48.1s −6.563 −6.556 −6.563

sched 50 50 orig 0.9s 4.3s 11.0s 2.67× 104 2.46× 104* 2.46× 104*

sched 50 50 scaled 0.5s 3.2s 5.1s 7.852 7.852 7.852*

sched 100 50 orig 1.6s 9.3s 22.1s — — —
sched 100 50 scaled 1.3s 9.7s 19.0s 67.17 66.75* 66.75*

sched 100 100 orig 6.7s 17.4s 43.2s — — —
sched 100 100 scaled 2.9s 18.4s 43.0s 27.33 27.52* 27.52*

sched 200 100 orig 17.6s 45.3s 114.1s — — —
sched 200 100 scaled 10.1s 47.4s 121.8s 51.81 51.76* 51.77*

Table 3: DIMACS test problems solved with SeDuMi (multithreaded) and PDOS
(single-threaded direct, denoted with ‘(d)’, and single-threaded indirect, denoted
with ‘(i)’). Failed problems are marked with a dash; PDOS objective values marked
with an asterisk are the reported values after PDOS took the maximum number of
iterations.

7.5 Summary

From the portfolio problems, lasso problems, and DIMACS benchmarks, we see that the
direct PDOS method not only produces competitive solutions, but can do so at a fraction of
the time needed by SeDuMi (and a fraction of the computing resources; recall that PDOS
is single-threaded). Even without threading or parallelization, our PDOS implementation
is competitive with SeDuMi: the largest lasso problem instance is solved in 3.5 hours with
SeDuMi, while direct PDOS solved the same problem in 35 minutes. The performance of
the direct PDOS method can be improved by using a large-scale linear system solver such as
PARDISO [44–47], which can reduce the factorization times. For instance, the largest lasso
problem is solved in about 22 minutes with PARDISO, with the majority of savings coming
from the reduction of the initial factor time.

As problem sizes grow, the indirect PDOS method becomes more viable, although its
performance is highly dependent on the chosen matrix equilibration routine. If the equili-
bration results in a small condition number, then each iteration of PDOS requires two or
three CG steps to converge to the desired CG accuracy. Otherwise, more CG steps may be
required and the total runtime increased.

While these problems fit in the shared-memory of a parallel machine, the real advantage
of PDOS is it ability to leverage distributed or parallel linear algebra to solve larger problems.

The DIMACS problems illustrate the importance of problem scaling and equilibration.
Further research is required to determine good equilibration routines in these contexts.
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8 Conclusion

In this paper, we have presented an operator-splitting applied to the primal cone problem P ,
PDOS—a first-order penalty-method for conic optimization. Incidentally, the PDOS iterates
not only solve the primal, but also the dual. The PDOS algorithm is guaranteed to converge
(provided a solution exists). With the proper scaling and choice of λ, the algorithm converges
to modest accuracy in several hundreds of iterations. If more iterations can be afforded, this
simple algorithm can solve a wide range of SOCPs.

More importantly, the (generic) algorithm can scale to large problems by leveraging
parallel sparse direct or sparse iterative solvers on distributed- or shared-memory machines
(e.g., Clique, Elemental, PARDISO, etc. [40, 44–47]).

Since many convex optimization problems can be reformulated as cone programs, this ap-
proach lets us solve a number of (large-scale) convex optimization problems and provides the
groundwork for developing massively parallel and distributed, conic solvers. We hope that
PDOS’ simplicity along with our implementation may spur interested readers in developing
both theory and code for general first-order conic solvers.
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