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Structure in variables

• often know or assume that solution to a problem is structured, e.g.,

– convex-cardinality problems
– high-dimensional statistics: assume low-dimensional structure
– prior knowledge that variables have, e.g., hierarchical or grouped structure

• handle by solving a problem with two conceptual components:

– main objective of interest (model fit, satisfying constraints, . . . )
– regularization term that encourages assumed form of structure

• possible structure of interest includes sparsity, low rank, . . .

this talk:

1 selecting regularization to promote assumed structure

2 many examples and applications (i.e., sparsify everything in sight)

3 solving the resulting optimization problems
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Geometric interpretation

get sparsity/structure when corners/kinks appear at sparse/structured points

e.g., quadratic cone, linear functions on prob. simplex, nuclear norm, . . .
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Convex envelope interpretation

• convex envelope of (nonconvex) f is the largest convex underestimator g

• i.e., the best convex lower bound to a function

• example: `1 is the envelope of card (on unit `∞ ball)

• example: ‖ · ‖∗ is the envelope of rank (on unit spectral norm ball)

• various characterizations: e.g., f∗∗ or convex hull of epigraph
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Penalty function interpretation

• compared to ridge penalty ‖x‖22, using `1 does two things:

1 higher emphasis on small values to go to exactly zero
2 lower emphasis on avoiding very large values

• thus useful for obtaining sparse or robust solutions to problems
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Atomic norm interpretation
(Chandrasekaran, Recht, Parrilo, Willsky)

• convex surrogates for measures of ‘simplicity’

• suppose underlying parameter vector or signal x ∈ Rn given by

x =

k∑
i=1

ciai, ai ∈ A, ci ≥ 0,

where A is set of ‘atoms’ and k � n (d.f. � ambient dimension)

• if A is usual basis vectors, model says that x is k-sparse, and

conv(A) = unit `1 ball

• then, e.g., minimize ‖x‖1 subject to y = Fx
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Heuristics

• λmax heuristic

1 (analytically) compute λmax as value for which x? = 0
2 set λ = αλmax, where α ∈ [0.01, 0.3]

e.g., for the lasso, λmax = ‖AT b‖∞

• polishing heuristic

1 use `1 heuristic to find x̂ with desired sparsity
2 fix sparsity pattern
3 re-solve (unregularized) problem with this pattern to obtain final solution

• reweighted `1 heuristic (Candès, Wakin, Boyd)
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Sparse design

• find sparse design vector x satisfying specifications

minimize ‖x‖1
subject to x ∈ C

• zero values of x simplify design or correspond to unneeded components

• when C = {x | Ax = b}, called basis pursuit or sparse coding

• e.g., find sparse representation of signal b in ‘dictionary’ or
‘overcomplete basis’ given by columns of A
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Sparse regression

• fit b ∈ Rm as linear combination of a subset of regressors

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

• zero values of x indicate features not predictive of the response

• also known as the lasso

• easily generalizes to other losses (e.g., sparse logistic regression)
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Sparse regression
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Sparse regression
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Estimation with outliers

• measurements yi = aTi x+ vi + wi

• vi is Gaussian noise (small), w is a sparse outlier vector (big)

• if O = {i | wi 6= 0} is set of outliers, MLE given by

minimize
∑
i/∈O(yi − aTi x)2

subject to |O| ≤ k

• convex approximation given by

minimize (1/2)‖y −Ax− w‖22 + λ‖w‖1

• same idea used in support vector machine
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Linear classifier with fewest errors

• want linear classifier b ≈ sign(aTx+ s) from (ai, bi) ∈ Rn × {−1, 1}

• error corresponds to negative margin: bi(a
T
i x+ s) ≤ 0

• find x, s that give fewest classification errors:

minimize ‖t‖1
subject to bi(a

T
i x+ s) + ti ≥ 1, i = 1, . . .m

with variables x, s, t

• close to a support vector machine

• can generalize to other convex feasibility problems
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Elastic net
(Zou & Hastie)

• problem:
minimize f(x) + λ‖x‖1 + (1− λ)‖x‖22

i.e., use both ridge and lasso penalties

• attempts to overcome the following potential drawbacks of the lasso:

– lasso selects at most (# examples) variables
– given group of very correlated features, lasso often picks one arbitrarily

• here, strongly correlated predictors are jointly included or not

• (in practice, need to do some rescaling above)

Examples and extensions 16



Fused lasso
(Tibshirani et al.; Rudin, Osher, Fatemi)

• problem:

minimize f(x) + λ1‖x‖1 + λ2
∑n
j=2 |xj − xj−1|

i.e., encourage x to be both sparse and piecewise constant

• special case: total variation denoising (set λ1 = 0)

• used in biology (e.g., gene expression) and signal reconstruction

• can also write penalty as ‖Dx‖1; could consider other matrices
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Total variation denoising
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Total variation denoising
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Group lasso
(e.g., Yuan & Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

• problem:
minimize f(x) + λ

∑N
i=1 ‖xi‖2

i.e., like lasso, but require groups of variables to be zero or not

• also called `1,2 mixed norm regularization

• related to multiple kernel learning via duality (see Bach et al.)
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Joint covariate selection for multi-task learning
(Obozinski, Taskar, Jordan)

• want to fit parameters xk ∈ Rp for each of multiple datasets Dk

• either use feature j in all tasks or none of them

• let xj = (x1j , . . . , x
K
j ) for j = 1, . . . , p

• problem:
minimize

∑K
k=1 f

k(xk) + λ
∑p
j=1 ‖xj‖2

with variables x1, . . . , xK ∈ Rp
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Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . . )

• problem:
minimize f(x) +

∑N
i=1 λi‖xgi‖2

where gi ⊆ [n] and G = {g1, . . . , gN}

• like group lasso, but the groups can overlap arbitrarily

• particular choices of groups can impose ‘structured’ sparsity

• e.g., topic models, selecting interaction terms for (graphical) models,
tree structure of gene networks, fMRI data

• generalizes to the composite absolute penalties family:

r(x) = ‖(‖xg1‖p1 , . . . , ‖xgN ‖pN )‖p0
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Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . . )

contiguous selection:

• G = {{1}, {5}, {1, 2}, {4, 5}, {1, 2, 3}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}}

• nonzero variables are contiguous in x, e.g., x? = (0, ∗, ∗, 0, 0)

• can extend the same idea to higher dimensions (e.g., select rectangles)

• e.g., time series, tumor diagnosis, . . .
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Structured group lasso
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . . )

hierarchical selection:

1

2 3

4 5 6

• G = {{4}, {5}, {6}, {2, 4}, {3, 5, 6}, {1, 2, 3, 4, 5, 6}}

• nonzero variables form a rooted and connected subtree

– if node is selected, so are its ancestors
– if node is not selected, neither are its descendants
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Matrix decomposition

• problem:
minimize f1(X1) + · · ·+ fN (XN )
subject to X1 + · · ·+XN = A

• many choices for the fi:

– squared Frobenius norm (least squares)
– entrywise `1 norm (sparse matrix)
– nuclear norm (low rank)
– sum-{row,column}-norm (group lasso)
– elementwise constraints (fixed sparsity pattern, nonnegative, . . . )
– semidefinite cone constraint

• easy to solve via ADMM if proxfi and ΠC are simple enough
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Low rank matrix completion
(Candès & Recht; Recht, Fazel, Parrilo)

• problem:
minimize ‖X‖∗
subject to Xij = Aij , (i, j) ∈ D

i.e., find low rank matrix that agrees with observed entries

• e.g., Netflix problem
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Robust PCA
(Candès et al.; Chandrasekaran et al.)

• regular PCA is the (nonconvex but solvable) problem

minimize ‖A− L‖2
subject to rank(L) ≤ k

i.e., recover rank k matrix L0 if A = L0 +N0, where N0 is noise

• if matrix also has some sparse but large noise, instead solve

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = A

i.e., recover low rank L and sparse corruption S if A = L0 + S0 +N0

• sparse + low rank decomposition has other applications (e.g., vision,
video segmentation, background subtraction, biology, indexing)
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Robust PCA
(Candès et al.; Chandrasekaran et al.)
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Structure learning in Gaussian graphical models
(Banerjee et al.; Friedman et al.; Chandrasekaran et al.)

• structure in precision matrix dictates Markov properties of MRF

• learn structure of (observed) Gaussian MRF via `1 regularized MLE:

minimize −l(X; Σ̂) + λ‖X‖1
subject to X � 0

• can extend to models with latent variables via

minimize −l(S − L; Σ̂) + λ1‖L‖∗ + λ2‖S‖1
subject to S − L � 0, L � 0

• many (involved) results on consistency of these estimators
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Proximal operator
(Martinet; Moreau; Rockafellar)

• proximal operator of f : Rn → R ∪ {+∞} is

proxλf (v) = argmin
x

(
f(x) + (1/2λ)‖x− v‖22

)
with parameter λ > 0

• f may be nonsmooth, have embedded constraints, . . .

• example: proximal operator of IC is ΠC

• many interpretations
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Polyhedra

• projection onto polyhedron C = {x | Ax = b, Cx ≤ d} is a QP

• projection onto affine set C = {x | Ax = b} is a linear operator

• box or hyperrectangle C = {x | l � x � u}:

(ΠC(v))k =


lk vk ≤ lk
vk lk ≤ vk ≤ uk
uk vk ≥ uk,

• also simple methods for hyperplanes, halfspaces, simplexes, . . .
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Norms and norm balls

• in general: if f = ‖ · ‖ and B is unit ball of dual norm, then

proxλf (v) = v − λΠB(v/λ)

• if f = ‖ · ‖2 and B is the unit `2 ball, then

ΠB(v) =

{
v/‖v‖2 ‖v‖2 > 1

v ‖v‖2 ≤ 1

proxλf (v) =

{
(1− λ/‖v‖2)v ‖v‖2 ≥ λ
0 ‖v‖2 < λ

sometimes called ‘block soft thresholding’ operator
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Norms and norm balls

• if f = ‖ · ‖1 and B is the unit `∞ ball, then

(ΠB(v))i =


1 vi > 1

vi |vi| ≤ 1

−1 vi < −1

lets us derive (elementwise) soft thresholding

proxλf (v) = (v − λ)+ − (−v − λ)+ =


vi − λ vi ≥ λ
0 |vi| ≤ λ
vi + λ vi ≤ −λ

• if f = ‖ · ‖∞ and B is unit `1 ball, simple algorithms available
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Matrix functions

• suppose convex F : Rm×n → R is orthogonally invariant:

F (QXQ̃) = F (X)

for all orthogonal Q, Q̃

• then F = f ◦ σ and

proxλF (A) = U diag(proxλf (d))V T

where A = U diag(d)V T is the SVD of A and σ(A) = d

• e.g., F = ‖ · ‖∗ has f = ‖ · ‖1 so proxλF is ‘singular value thresholding’
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Proximal gradient method
(e.g., Levitin & Polyak; Mercier; Chen & Rockafellar; Combettes; Tseng)

• problem form
minimize f(x) + g(x)

where f is smooth and g : Rn → R ∪ {+∞} is closed proper convex

• method:
xk+1 := proxλkg(x

k − λk∇f(xk))

• special case: projected gradient method (take g = IC)
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Accelerated proximal gradient method
(Nesterov; Beck & Teboulle; Tseng)

• problem form
minimize f(x) + g(x)

where f is smooth and g : Rn → R ∪ {+∞} is closed proper convex

• method:

yk+1 := xk + ωk
(
xk − xk−1

)
xk+1 := proxλkg

(
yk+1 − λk∇f(yk+1)

)
works for, e.g., ωk = k/(k + 3) and particular λk

• faster in both theory and practice
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ADMM
(e.g., Gabay & Mercier; Glowinski & Marrocco; Boyd et al.)

• problem form
minimize f(x) + g(x)

where f, g : Rn → R ∪ {+∞} are closed proper convex

• method:

xk+1 := proxλf (zk − uk)

zk+1 := proxλg(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

• basically, always works
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Examples

• (accelerated) proximal gradient for elastic net:

1 gradient step for smooth loss (e.g., logistic, least squares, . . . )
2 shrinkage and elementwise soft thresholding

• ADMM for multi-task learning with joint covariate selection:

1 evaluate proxfk (in parallel for each dataset)
2 block soft thresholding (in parallel for each feature)
3 dual update

• ADMM for robust PCA:

1 singular value thresholding
2 elementwise soft thresholding
3 dual update
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Conclusions

questions? (for details, see the papers)

some review papers:

Bach et al. Optimization with sparsity-inducing penalties. FTML, 2011.

Boyd. `1 methods for convex-cardinality problems. EE 364b Notes.

Boyd et al. Distributed optimization and statistical learning via the alternating direction
method of multipliers. FTML, 2011.

Bruckstein et al. From sparse solutions of systems of equations to sparse modeling of
signals and images. SIAM Review, 2009.

Hastie et al. The Elements of Statistical Learning, chapter 18 (high-dimensional problems).

Parikh and Boyd. Proximal algorithms. To appear in FTOC, 2013.
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