Structure and Regularization

Neal Parikh
Computer Science Department
Stanford University

February 2013

Outline

(1) ℓ_{1} regularization

(2) Examples and extensions

(3) Proximal algorithms

(4) Conclusions
ℓ_{1} regularization

Structure in variables

- often know or assume that solution to a problem is structured, e.g.,
- convex-cardinality problems
- high-dimensional statistics: assume low-dimensional structure
- prior knowledge that variables have, e.g., hierarchical or grouped structure
- handle by solving a problem with two conceptual components:
- main objective of interest (model fit, satisfying constraints, ...)
- regularization term that encourages assumed form of structure
- possible structure of interest includes sparsity, low rank, ...
this talk:
(1) selecting regularization to promote assumed structure
(2) many examples and applications (i.e., sparsify everything in sight)
(3) solving the resulting optimization problems

Geometric interpretation

get sparsity/structure when corners/kinks appear at sparse/structured points e.g., quadratic cone, linear functions on prob. simplex, nuclear norm, ...

Convex envelope interpretation

- convex envelope of (nonconvex) f is the largest convex underestimator g
- i.e., the best convex lower bound to a function

- example: ℓ_{1} is the envelope of card (on unit ℓ_{∞} ball)
- example: $\|\cdot\|_{*}$ is the envelope of rank (on unit spectral norm ball)
- various characterizations: e.g., $f^{* *}$ or convex hull of epigraph

Penalty function interpretation

- compared to ridge penalty $\|x\|_{2}^{2}$, using ℓ_{1} does two things:
(1) higher emphasis on small values to go to exactly zero
(2) lower emphasis on avoiding very large values
- thus useful for obtaining sparse or robust solutions to problems

Atomic norm interpretation

(Chandrasekaran, Recht, Parrilo, Willsky)

- convex surrogates for measures of 'simplicity'
- suppose underlying parameter vector or signal $x \in \mathbf{R}^{n}$ given by

$$
x=\sum_{i=1}^{k} c_{i} a_{i}, \quad a_{i} \in \mathcal{A}, c_{i} \geq 0
$$

where \mathcal{A} is set of 'atoms' and $k \ll n$ (d.f. \ll ambient dimension)

- if \mathcal{A} is usual basis vectors, model says that x is k-sparse, and

$$
\operatorname{conv}(\mathcal{A})=\text { unit } \ell_{1} \text { ball }
$$

- then, e.g., minimize $\|x\|_{1}$ subject to $y=F x$

Heuristics

- $\lambda_{\text {max }}$ heuristic
(1) (analytically) compute $\lambda_{\max }$ as value for which $x^{\star}=0$
(2) set $\lambda=\alpha \lambda_{\text {max }}$, where $\alpha \in[0.01,0.3]$
e.g., for the lasso, $\lambda_{\max }=\left\|A^{T} b\right\|_{\infty}$
- polishing heuristic
(1) use ℓ_{1} heuristic to find \hat{x} with desired sparsity
(2) fix sparsity pattern

3 re-solve (unregularized) problem with this pattern to obtain final solution

- reweighted ℓ_{1} heuristic (Candès, Wakin, Boyd)

Outline

(1) ℓ_{1} regularization

(2) Examples and extensions

(3) Proximal algorithms

(4) Conclusions

Sparse design

- find sparse design vector x satisfying specifications

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

- zero values of x simplify design or correspond to unneeded components
- when $\mathcal{C}=\{x \mid A x=b\}$, called basis pursuit or sparse coding
- e.g., find sparse representation of signal b in 'dictionary' or 'overcomplete basis' given by columns of A

Sparse regression

- fit $b \in \mathbf{R}^{m}$ as linear combination of a subset of regressors

$$
\operatorname{minimize} \quad(1 / 2)\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- zero values of x indicate features not predictive of the response
- also known as the lasso
- easily generalizes to other losses (e.g., sparse logistic regression)

Sparse regression

Sparse regression

Estimation with outliers

- measurements $y_{i}=a_{i}^{T} x+v_{i}+w_{i}$
- v_{i} is Gaussian noise (small), w is a sparse outlier vector (big)
- if $\mathcal{O}=\left\{i \mid w_{i} \neq 0\right\}$ is set of outliers, MLE given by

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i \notin \mathcal{O}}\left(y_{i}-a_{i}^{T} x\right)^{2} \\
\text { subject to } & |\mathcal{O}|^{\leq} \leq k
\end{array}
$$

- convex approximation given by

$$
\operatorname{minimize} \quad(1 / 2)\|y-A x-w\|_{2}^{2}+\lambda\|w\|_{1}
$$

- same idea used in support vector machine

Linear classifier with fewest errors

- want linear classifier $b \approx \operatorname{sign}\left(a^{T} x+s\right)$ from $\left(a_{i}, b_{i}\right) \in \mathbf{R}^{n} \times\{-1,1\}$
- error corresponds to negative margin: $b_{i}\left(a_{i}^{T} x+s\right) \leq 0$
- find x, s that give fewest classification errors:

$$
\begin{array}{ll}
\operatorname{minimize} & \|t\|_{1} \\
\text { subject to } & b_{i}\left(a_{i}^{T} x+s\right)+t_{i} \geq 1, \quad i=1, \ldots m
\end{array}
$$

with variables x, s, t

- close to a support vector machine
- can generalize to other convex feasibility problems

Elastic net

(Zou \& Hastie)

- problem:

$$
\operatorname{minimize} \quad f(x)+\lambda\|x\|_{1}+(1-\lambda)\|x\|_{2}^{2}
$$

i.e., use both ridge and lasso penalties

- attempts to overcome the following potential drawbacks of the lasso:
- lasso selects at most (\# examples) variables
- given group of very correlated features, lasso often picks one arbitrarily
- here, strongly correlated predictors are jointly included or not
- (in practice, need to do some rescaling above)

Fused lasso

(Tibshirani et al.; Rudin, Osher, Fatemi)

- problem:

$$
\operatorname{minimize} \quad f(x)+\lambda_{1}\|x\|_{1}+\lambda_{2} \sum_{j=2}^{n}\left|x_{j}-x_{j-1}\right|
$$

i.e., encourage x to be both sparse and piecewise constant

- special case: total variation denoising (set $\lambda_{1}=0$)
- used in biology (e.g., gene expression) and signal reconstruction
- can also write penalty as $\|D x\|_{1}$; could consider other matrices

Total variation denoising

120 linear measurements and $31 \times 31=961$ variables (' $8 \times$ undersampled')

Total variation denoising

120 linear measurements and $31 \times 31=961$ variables (' $8 \times$ undersampled')

Group lasso

(e.g., Yuan \& Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

- problem:

$$
\operatorname{minimize} \quad f(x)+\lambda \sum_{i=1}^{N}\left\|x_{i}\right\|_{2}
$$

i.e., like lasso, but require groups of variables to be zero or not

- also called $\ell_{1,2}$ mixed norm regularization
- related to multiple kernel learning via duality (see Bach et al.)

Joint covariate selection for multi-task learning

(Obozinski, Taskar, Jordan)

- want to fit parameters $x^{k} \in \mathbf{R}^{p}$ for each of multiple datasets \mathcal{D}^{k}
- either use feature j in all tasks or none of them
- let $x_{j}=\left(x_{j}^{1}, \ldots, x_{j}^{K}\right)$ for $j=1, \ldots, p$
- problem:

$$
\operatorname{minimize} \quad \sum_{k=1}^{K} f^{k}\left(x^{k}\right)+\lambda \sum_{j=1}^{p}\left\|x_{j}\right\|_{2}
$$

with variables $x^{1}, \ldots, x^{K} \in \mathbf{R}^{p}$

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)

- problem:

$$
\operatorname{minimize} \quad f(x)+\sum_{i=1}^{N} \lambda_{i}\left\|x_{g_{i}}\right\|_{2}
$$

where $g_{i} \subseteq[n]$ and $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$

- like group lasso, but the groups can overlap arbitrarily
- particular choices of groups can impose 'structured' sparsity
- e.g., topic models, selecting interaction terms for (graphical) models, tree structure of gene networks, fMRI data
- generalizes to the composite absolute penalties family:

$$
r(x)=\left\|\left(\left\|x_{g_{1}}\right\|_{p_{1}}, \ldots,\left\|x_{g_{N}}\right\|_{p_{N}}\right)\right\|_{p_{0}}
$$

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)

contiguous selection:

- $\mathcal{G}=\{\{1\},\{5\},\{1,2\},\{4,5\},\{1,2,3\},\{3,4,5\},\{1,2,3,4\},\{2,3,4,5\}\}$
- nonzero variables are contiguous in x, e.g., $x^{\star}=(0, *, *, 0,0)$
- can extend the same idea to higher dimensions (e.g., select rectangles)
- e.g., time series, tumor diagnosis, ...

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)
hierarchical selection:

- $\mathcal{G}=\{\{4\},\{5\},\{6\},\{2,4\},\{3,5,6\},\{1,2,3,4,5,6\}\}$
- nonzero variables form a rooted and connected subtree
- if node is selected, so are its ancestors
- if node is not selected, neither are its descendants

Matrix decomposition

- problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(X_{1}\right)+\cdots+f_{N}\left(X_{N}\right) \\
\text { subject to } & X_{1}+\cdots+X_{N}=A
\end{array}
$$

- many choices for the f_{i} :
- squared Frobenius norm (least squares)
- entrywise ℓ_{1} norm (sparse matrix)
- nuclear norm (low rank)
- sum-\{row,column\}-norm (group lasso)
- elementwise constraints (fixed sparsity pattern, nonnegative, ...)
- semidefinite cone constraint
- easy to solve via ADMM if $\operatorname{prox}_{f_{i}}$ and $\Pi_{\mathcal{C}}$ are simple enough

Low rank matrix completion

(Candès \& Recht; Recht, Fazel, Parrilo)

- problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|X\|_{*} \\
\text { subject to } & X_{i j}=A_{i j}, \quad(i, j) \in \mathcal{D}
\end{array}
$$

i.e., find low rank matrix that agrees with observed entries

- e.g., Netflix problem

Robust PCA

(Candès et al.; Chandrasekaran et al.)

- regular PCA is the (nonconvex but solvable) problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A-L\|_{2} \\
\text { subject to } & \operatorname{rank}(L) \leq k
\end{array}
$$

i.e., recover rank k matrix L_{0} if $A=L_{0}+N_{0}$, where N_{0} is noise

- if matrix also has some sparse but large noise, instead solve

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=A
\end{array}
$$

i.e., recover low rank L and sparse corruption S if $A=L_{0}+S_{0}+N_{0}$

- sparse + low rank decomposition has other applications (e.g., vision, video segmentation, background subtraction, biology, indexing)

Robust PCA

(Candès et al.; Chandrasekaran et al.)

Structure learning in Gaussian graphical models

(Banerjee et al.; Friedman et al.; Chandrasekaran et al.)

- structure in precision matrix dictates Markov properties of MRF
- learn structure of (observed) Gaussian MRF via ℓ_{1} regularized MLE:

$$
\begin{array}{ll}
\operatorname{minimize} & -l(X ; \hat{\Sigma})+\lambda\|X\|_{1} \\
\text { subject to } & X \succeq 0
\end{array}
$$

- can extend to models with latent variables via

$$
\begin{array}{ll}
\operatorname{minimize} & -l(S-L ; \hat{\Sigma})+\lambda_{1}\|L\|_{*}+\lambda_{2}\|S\|_{1} \\
\text { subject to } & S-L \succeq 0, \quad L \succeq 0
\end{array}
$$

- many (involved) results on consistency of these estimators

Outline

(1) ℓ_{1} regularization

(2) Examples and extensions

(3) Proximal algorithms

(4) Conclusions

Proximal algorithms

Proximal operator

(Martinet; Moreau; Rockafellar)

- proximal operator of $f: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$ is

$$
\operatorname{prox}_{\lambda f}(v)=\underset{x}{\operatorname{argmin}}\left(f(x)+(1 / 2 \lambda)\|x-v\|_{2}^{2}\right)
$$

with parameter $\lambda>0$

- f may be nonsmooth, have embedded constraints, ...
- example: proximal operator of $I_{\mathcal{C}}$ is $\Pi_{\mathcal{C}}$
- many interpretations

Polyhedra

- projection onto polyhedron $\mathcal{C}=\{x \mid A x=b, C x \leq d\}$ is a QP
- projection onto affine set $\mathcal{C}=\{x \mid A x=b\}$ is a linear operator
- box or hyperrectangle $\mathcal{C}=\{x \mid l \preceq x \preceq u\}$:

$$
\left(\Pi_{\mathcal{C}}(v)\right)_{k}= \begin{cases}l_{k} & v_{k} \leq l_{k} \\ v_{k} & l_{k} \leq v_{k} \leq u_{k} \\ u_{k} & v_{k} \geq u_{k}\end{cases}
$$

- also simple methods for hyperplanes, halfspaces, simplexes, ...

Norms and norm balls

- in general: if $f=\|\cdot\|$ and \mathcal{B} is unit ball of dual norm, then

$$
\operatorname{prox}_{\lambda f}(v)=v-\lambda \Pi_{\mathcal{B}}(v / \lambda)
$$

- if $f=\|\cdot\|_{2}$ and \mathcal{B} is the unit ℓ_{2} ball, then

$$
\begin{aligned}
\Pi_{\mathcal{B}}(v) & = \begin{cases}v /\|v\|_{2} & \|v\|_{2}>1 \\
v & \|v\|_{2} \leq 1\end{cases} \\
\operatorname{prox}_{\lambda f}(v) & = \begin{cases}\left(1-\lambda /\|v\|_{2}\right) v & \|v\|_{2} \geq \lambda \\
0 & \|v\|_{2}<\lambda\end{cases}
\end{aligned}
$$

sometimes called 'block soft thresholding' operator

Norms and norm balls

- if $f=\|\cdot\|_{1}$ and \mathcal{B} is the unit ℓ_{∞} ball, then

$$
\left(\Pi_{\mathcal{B}}(v)\right)_{i}= \begin{cases}1 & v_{i}>1 \\ v_{i} & \left|v_{i}\right| \leq 1 \\ -1 & v_{i}<-1\end{cases}
$$

lets us derive (elementwise) soft thresholding

$$
\operatorname{prox}_{\lambda f}(v)=(v-\lambda)_{+}-(-v-\lambda)_{+}= \begin{cases}v_{i}-\lambda & v_{i} \geq \lambda \\ 0 & \left|v_{i}\right| \leq \lambda \\ v_{i}+\lambda & v_{i} \leq-\lambda\end{cases}
$$

- if $f=\|\cdot\|_{\infty}$ and \mathcal{B} is unit ℓ_{1} ball, simple algorithms available

Matrix functions

- suppose convex $F: \mathbf{R}^{m \times n} \rightarrow \mathbf{R}$ is orthogonally invariant:

$$
F(Q X \tilde{Q})=F(X)
$$

for all orthogonal Q, \tilde{Q}

- then $F=f \circ \sigma$ and

$$
\operatorname{prox}_{\lambda F}(A)=U \operatorname{diag}\left(\operatorname{prox}_{\lambda f}(d)\right) V^{T}
$$

where $A=U \operatorname{diag}(d) V^{T}$ is the SVD of A and $\sigma(A)=d$

- e.g., $F=\|\cdot\|_{*}$ has $f=\|\cdot\|_{1}$ so $\operatorname{prox}_{\lambda F}$ is 'singular value thresholding'

Proximal gradient method

(e.g., Levitin \& Polyak; Mercier; Chen \& Rockafellar; Combettes; Tseng)

- problem form

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

where f is smooth and $g: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$ is closed proper convex

- method:

$$
x^{k+1}:=\operatorname{prox}_{\lambda^{k} g}\left(x^{k}-\lambda^{k} \nabla f\left(x^{k}\right)\right)
$$

- special case: projected gradient method (take $g=I_{\mathcal{C}}$)

Accelerated proximal gradient method

(Nesterov; Beck \& Teboulle; Tseng)

- problem form

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

where f is smooth and $g: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$ is closed proper convex

- method:

$$
\begin{aligned}
y^{k+1} & :=x^{k}+\omega^{k}\left(x^{k}-x^{k-1}\right) \\
x^{k+1} & :=\operatorname{prox}_{\lambda^{k} g}\left(y^{k+1}-\lambda^{k} \nabla f\left(y^{k+1}\right)\right)
\end{aligned}
$$

works for, e.g., $\omega^{k}=k /(k+3)$ and particular λ^{k}

- faster in both theory and practice

ADMM

(e.g., Gabay \& Mercier; Glowinski \& Marrocco; Boyd et al.)

- problem form

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

where $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$ are closed proper convex

- method:

$$
\begin{aligned}
x^{k+1} & :=\operatorname{prox}_{\lambda f}\left(z^{k}-u^{k}\right) \\
z^{k+1} & :=\operatorname{prox}_{\lambda g}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & :=u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

- basically, always works

Examples

- (accelerated) proximal gradient for elastic net:
(1) gradient step for smooth loss (e.g., logistic, least squares, ...)
(2) shrinkage and elementwise soft thresholding
- ADMM for multi-task learning with joint covariate selection:
(1) evaluate prox $_{f^{k}}$ (in parallel for each dataset)
(2) block soft thresholding (in parallel for each feature)
(3) dual update
- ADMM for robust PCA:
(1) singular value thresholding
(2) elementwise soft thresholding
(3) dual update

Outline

(1) ℓ_{1} regularization

(2) Examples and extensions
(3) Proximal algorithms
(4) Conclusions

Conclusions

questions? (for details, see the papers)

some review papers:

Bach et al. Optimization with sparsity-inducing penalties. FTML, 2011.
Boyd. ℓ_{1} methods for convex-cardinality problems. EE 364b Notes.
Boyd et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. FTML, 2011.

Bruckstein et al. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 2009.

Hastie et al. The Elements of Statistical Learning, chapter 18 (high-dimensional problems).
Parikh and Boyd. Proximal algorithms. To appear in FTOC, 2013.

